Very Low I_q LD0 150 mA Regulator with RESET and Delay Time Select

The NCV8660C is a precision very low Iq low dropout voltage regulator. Quiescent currents as low as 25 μ A typical make it ideal for automotive applications requiring low quiescent current with or without a load. Integrated control features such as Reset and Delay Time Select make it ideal for powering microprocessors.

It is available with a fixed output voltage of 5.0~V and regulates within $\pm 2.0\%$.

Features

- Fixed Output Voltage of 5 V
- $\pm 2.0\%$ Output Voltage up to $V_{BAT} = 40 \text{ V}$
- Output Current up to 150 mA
- Microprocessor Compatible Control Functions:
 - Delay Time Select
 - ◆ RESET Output
- Low Dropout Voltage
- Low Quiescent Current of 25 μA Typical
- Stable Under No Load Conditions
- Protection Features:
 - ◆ Thermal Shutdown
 - Short Circuit
- AEC-Q100 Grade 1 Qualified and PPAP Capable
- These are Pb-Free Devices

Applications

- Automotive:
 - Body Control Module
 - Instrument and Clusters
 - Occupant Protection and Comfort
 - Powertrain
- Battery Powered Consumer Electronics

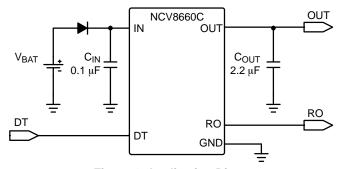


Figure 1. Application Diagram

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

x = 5 for 5 V Output

y = 1 for 8 ms, 128 ms Reset Delay

A = Assembly Location

L = Wafer Lot
Y = Year
WW = Work Week
G or ■ = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the dimensions section on page 10 of this data sheet.

PIN DESCRIPTIONS

Pin No.	Symbol	Function
1	IN	Input Supply Voltage. 0.1 μF bypass capacitor to GND at the IC.
2	R _O	Reset Output. CMOS compatible output. Goes low when V _{OUT} drops by more than 7% from nominal.
5–8	GND	Ground
3	DT	Reset Delay Time Select. Short to GND or connect to OUT to select time.
4	OUT	Regulated Voltage Output. 2.2 μF to ground for typical applications.

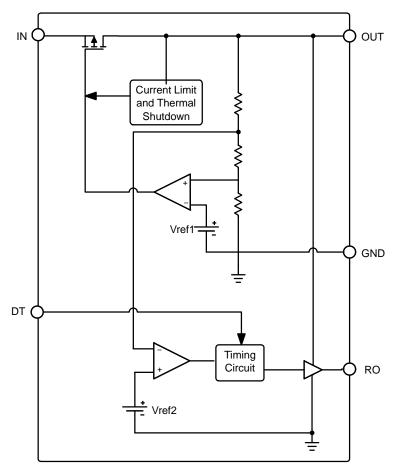


Figure 2. Block Diagram

ABSOLUTE MAXIMUM RATINGS

Rating		Symbol	Min	Max	Unit
Input Voltage (IN)		V _{IN}	-0.3	40	V
Input Current	I _{IN}	-1.0	-	mA	
Output Voltage (OUT) DC Transient, t < 10 s (Note 1)	V _{OUT}	-0.3 -0.3	5.5 16	V	
Output Current (OUT)		I _{OUT}	-1.0	Current Limited	mA
Storage Temperature Range		T _{STG}	-55	150	°C
DT (Reset Delay Time Select) Voltage (Note 2)		V_{DT}	-0.3	16	V
DT (Reset Delay Time Select) Current (Note 2)		I _{DT}	-1.0	1.0	mA
RO (Reset Output) Voltage DC Transient, t < 10 s	V _{RO}	-0.3 -0.3	5.5 16	V	
RO (Reset Output) Current	I _{RO}	-1.0	1.0	mA	
ESD CAPABILITY			•	•	
ESD Capability, Human Body Model (Note 3)		ESD _{HB}	-2.0	2.0	kV
ESD Capability, Machine Model (Note 3)	ESD _{MM}	-200	200	V	
THERMAL RESISTANCE					
Junction-to-Ambient (Note 4)	$R_{ hetaJA}$	96		°C/W	
Junction-to-Lead (pin 6) (Note 4)	$R_{ hetaJT}$	33		°C/W	
LEAD SOLDERING TEMPERATURE AND MSL					
Moisture Sensitivity Level	MSL		3	_	
Lead Temperature Soldering: SMD style only, Re Pb–Free Part 60 – 150 sec above 217°C, 40 sec	SLD	-	265 peak	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The output voltage must not exceed the input voltage.

- 2. External resistor required to minimize current to less than 1 mA when the control voltage is above 16 V.
- 3. This device series incorporates ESD protection and is tested by the following methods:

 ESD HBM tested per AEC-Q100-002 (JS-001-2012)

 - ESD MM tested per AEC-Q100-003 (EIA/JESD22-A115)
- 4. Values represented typical steady-state thermal performance on 1 oz. copper FR4 PCB with 1 in² copper area.
- 5. Per IPC / JEDEC J-STD-020C.

OPERATING RANGE

Pin Symbol, Parameter	Symbol	Min	Max	Unit
V _{IN} , Input Voltage Operating Range	V _{IN}	4.5	40	V
Junction Temperature Range	TJ	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS 5.5 V < V_{IN} < 40 V, $-40^{\circ}C \le T_{J} \le +150^{\circ}C$, unless otherwise specified

Characteristic	Symbol	Conditions	Min	Тур	Max	Unit	
GENERAL	•		•		•		
Quiescent Current	Iq	$100\mu A < I_{OUT} < 150mA, V_{IN} = 13.2V, T_J = 25^{\circ}C$		25	30	μΑ	
		100μ A < I_{OUT} < 150mA, V_{IN} = 13.2V, $T_{J} \le 85$ °C	-	-	40		
Thermal Shutdown (Note 6)	T _{SD}		150	175	195	°C	
Thermal Hysteresis (Note 6)	T _{HYS}		-	25	_	°C	
OUT							
Output Voltage	V _{OUT}	6 V ≤ V _{IN} ≤ 16 V, 0.1 mA ≤ I _{OUT} ≤ 150 mA	4.9	5.0	5.1	V	
		6 V ≤ V _{IN} ≤ 40 V, 0.1 mA ≤ I _{OUT} ≤ 100 mA	4.9	5.0	5.1		
		$5.6 \text{ V} \le \text{V}_{\text{IN}} \le 16 \text{ V}, 0 \text{ mA} \le \text{I}_{\text{OUT}} \le 150 \text{ mA}, \\ -40^{\circ}\text{C} \le \text{T}_{\text{J}} \le +125^{\circ}\text{C}$	4.9	5.0	5.1		
Output Current Limit	I _{CL}	OUT = 96% x V _{OUT} nominal	205	-	525	mA	
Output Current Limit, Short Circuit	I _{SCKT}	OUT = 0 V	205	-	525	mA	
Load Regulation	ΔV_{OUT}	V _{IN} = 13.2 V, I _{OUT} = 0.1 mA to 150 mA		10	40	mV	
Line Regulation	ΔV_{OUT}	I _{OUT} = 5 mA, V _{IN} = 6 V to 28 V		0	20	mV	
Dropout Voltage	V _{DR}	I_{OUT} = 100 mA, (Note 7) V_{DR} = V_{IN} - V_{OUT} , (ΔV_{OUT} = -100 mV)	-	0.225	0.45	V	
		I_{OUT} = 150 mA, (Note 7) V_{DR} = V_{IN} - V_{OUT} , (ΔV_{OUT} = -100 mV)	-	0.30	0.60		
Power Supply Ripple Rejection	PSRR	V _{IN} = 13.2 V, 0.5 V _{PP} , 100 Hz	-	60	-	dB	
DT (Reset Delay Time Select)							
Threshold Voltage High Low			2	_	- 0.8	V V	
Input Current		DT = 5 V	_	_	1.0	μA	
RO, Reset Output		D1 = 0 V			1.0	μπ	
RESET Threshold	V_{Rf}	V _{OUT} decreasing	90	93	96	%V _{OUT}	
RESET Threshold Hysteresis	V _{Rhys}	- OUT desiredig	_	2.0	_	%V _{OUT}	
RO Output Low	V _{RL}	10 kΩ RESET to OUT, V _{OUT} = 4.5 V	_	0.2	0.4	V	
RO Output High (OUT–RO)	V _{RH}	10 kΩ RESET to GND	V _{OUT} -0.4	V _{OUT} -0.2	V _{OUT}	V	
Reset Reaction Time	t _{RR}	V _{OUT} into UV to RESET Low	16	25	38	μsec	
RESET Delay with DT Selection		1	1	ı	ı	l	
Delay Time Out of RESET – 8 ms version – 128 ms version	t _{dRx}	V _{OUT} into regulation to RO High	5.0 80	8.0 128	11.5 184	msec	

Not production tested, guaranteed by design.
 Dropout at a given current level is defined as the voltage difference of V_{IN} to V_{OUT} with V_{IN} decreasing until the output drops by 100 mV.
 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL OPERATING CHARACTERISTICS

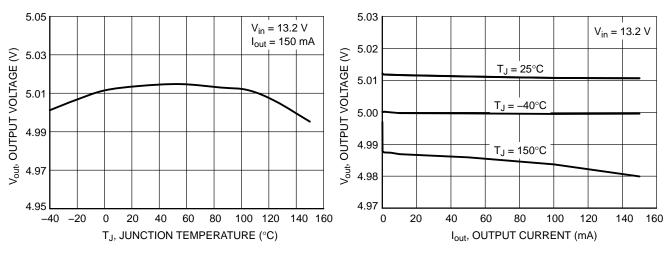


Figure 3. Output Voltage vs. Temperature

Figure 4. Output Voltage vs. Output Current

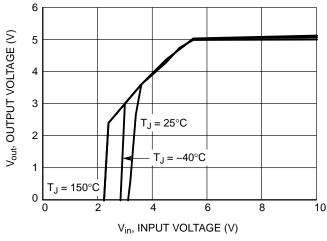


Figure 5. Output Voltage vs. Input Voltage $(R_{LOAD} = 51 \text{ k}, I_{out} = 100 \mu\text{A})$

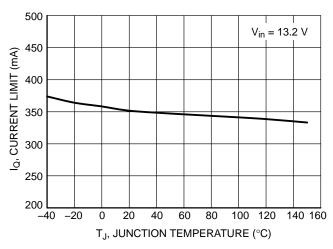


Figure 6. Current Limit vs. Temperature

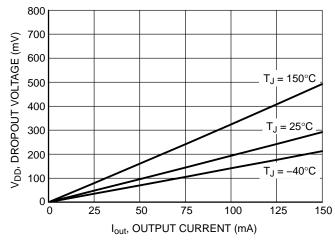


Figure 7. Dropout Voltage vs. Output Current

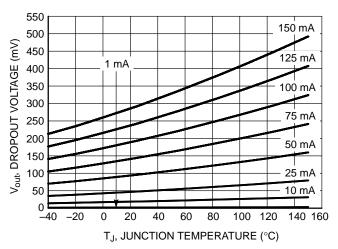


Figure 8. Dropout Voltage vs. Temperature

TYPICAL OPERATING CHARACTERISTICS

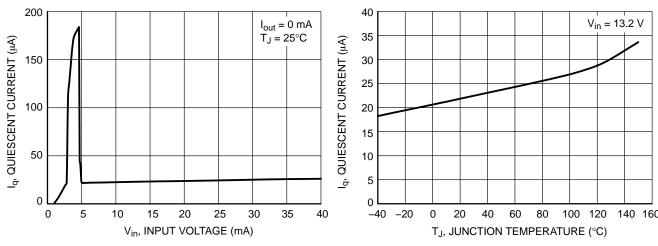


Figure 9. Quiescent Current vs. Input Voltage

Figure 10. Quiescent Current vs. Temperature

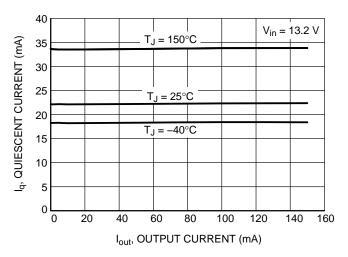


Figure 11. Quiescent Current vs. Output Current

TYPICAL OPERATING CHARACTERISTICS

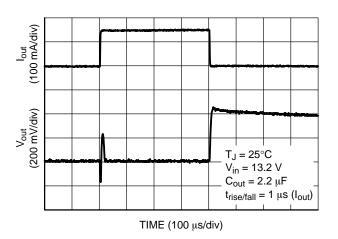
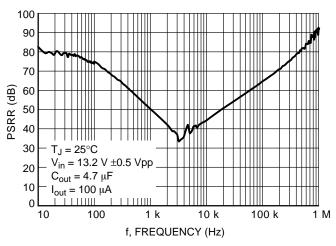



Figure 12. Load Transient

Figure 13. Line Transient

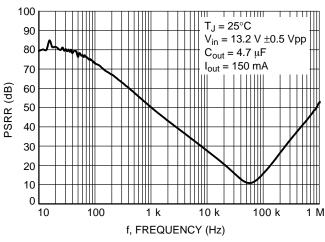
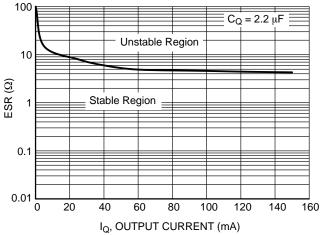



Figure 14. Ripple Rejection vs. Frequency

Figure 15. Ripple Rejection vs. Frequency

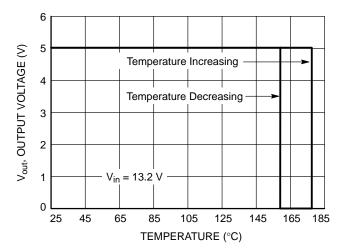


Figure 17. Thermal Shutdown vs. Temperature

DETAILED OPERATING DESCRIPTION

General

The NCV8660C is a 5 V linear regulator providing low drop—out voltage for 150 mA at low quiescent current levels. Also featured in this part is a reset output with selectable delay times. Delay times are selectable via part selection and control through the Delay Time Select (DT) pin. No pull—up resistor is needed on the reset output (RO). Pull—up and pull—down capability are included. Only a small bypass capacitor on the input (IN) supply pin and output (OUT) voltage pin are required for normal operation. Thermal shutdown functionality protects the IC from damage caused from excessively high temperatures appearing on the IC.

Output Voltage

Output stability is determined by the capacitor selected from OUT to GND. The NCV8660C has been designed to work with low ESR (equivalent series resistance) ceramic capacitors. The device is extremely stable using virtually any capacitor 2.2 μF and above. Reference the Output Capacitor Stability graph in Figure 16.

The output capacitor value will affect overshoot during power-up. A lower value capacitor will cause higher overshoot on the output. System evaluation should be performed with minimum loading for evaluation of overshoot.

Selection of process technology for the NCV8660C allows for low quiescent current independent of loading. Quiescent current will remain flat across the entire range of loads providing a low quiescent current condition in standby and under heavy loads. This is highly beneficial to systems requiring microprocessor interrupts during standby mode as duty cycle and load changes have no impact on the standby current. Reference Figure 11 for Quiescent Current vs Output Current.

Current Limit

Current limit is provided on OUT to protect the IC. The minimum specification is 205 mA. Current limit is specified under two conditions (OUT = 96% x OUT nominal) and (OUT = 0 V). No fold–back circuitry exists. Any measured differences can be attributed to change in die temperature. The part may be operated up to 205 mA provided thermal die temperature is considered and is kept below 150° C. Degradation of electrical parameters at this current is expected at these elevated levels. A reset (RO) will not occur with a load less than 205 mA.

Reset Output

A reset signal is provided on the Reset Output (RO) pin to provide feedback to the microprocessor of an out of regulation condition. This is in the form of a logic signal on RO. Output (OUT) voltage conditions below the RESET threshold cause RO to go low. The RO integrity is maintained down to OUT = 1.0 V.

The Reset Output (RO) circuitry includes an active internal pullup to the output (OUT) as shown in Figure 18. No external pullup is neccessary.

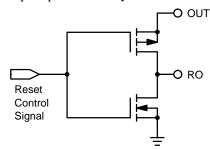


Figure 18. Reset Output Circuitry

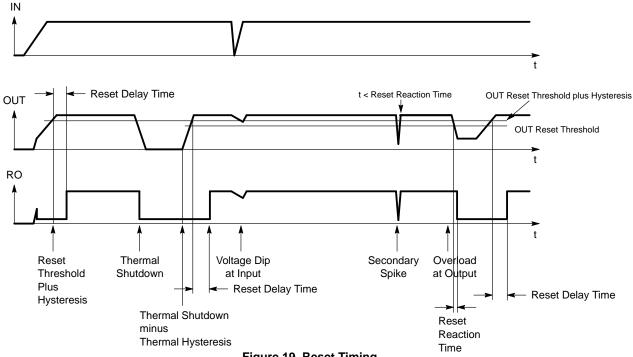


Figure 19. Reset Timing

During power-up (or restoring OUT voltage from a reset event), the OUT voltage must be maintained above the Reset threshold for the Reset Delay time before RO goes high. The time for Reset Delay is determined by the choice of IC and the state of the DT pin.

Reset Delay Time Select

Selection of the NCV8660C device and the state of the DT pin determines the available Reset Delay times. The part is designed for use with DT tied to ground or OUT, but may be controlled by any logic signal which provides a threshold between 0.8 V and 2 V. The default condition for an open DT pin is the faster Reset time (DT = GND condition). Times are in pairs and are highlighted in the chart below. Consult factory for availability.

	DT=GND	DT=OUT
	Reset Time	Reset Time
NCV86601C	8 ms	128 ms
NCV86602C	8 ms	32 ms
NCV86603C	16 ms	64 ms
NCV86604C	32 ms	128 ms

NOTE: The timing values can be selected from the following list: 8, 16, 32, 64, 128 ms. Contact factory for options not included in ORDERING INFORMATION table on page 10.

The Delay Time select (DT) pin is logic level controlled and provides Reset Delay time per the chart. Note the DT pin is sampled only when RO is low, and changes to the DT pin when RO is high will not effect the reset delay time.

Thermal Shutdown

When the die temperature exceeds the Thermal Shutdown threshold, a Thermal Shutdown event is detected OUT is turned off, and RO goes low. The IC will remain in this state until the die temperature moves below the shutdown threshold (175°C typical) minus the hysteresis factor (25°C typical). The output will then turn back on and RO will go high after the RESET Delay time.

Hints

For better EMC performance on RO and DT pins is recommended to use additional decoupling 100 pF ceramic capacitors connected between DT pin and GND and RO pin and GND, respectively. Capacitors should be placed as near as possible to the corresponding pin and the connection between capacitor ground pad and system GND pin should be as short as possible.

Input Capacitor C_{IN} is required if regulator is located far from power supply filter. If extremely fast input voltage transients are expected with slew rate in excess of 4 V/µs then appropriate input filter must be used. The filter can be composed of several capacitors in parallel.

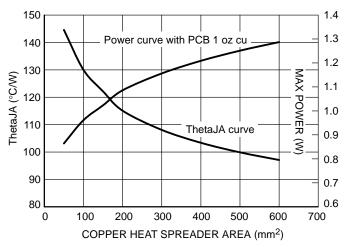


Figure 20. $R_{\theta JA}$ vs. PCB Copper Area (SOIC-8 Fused)

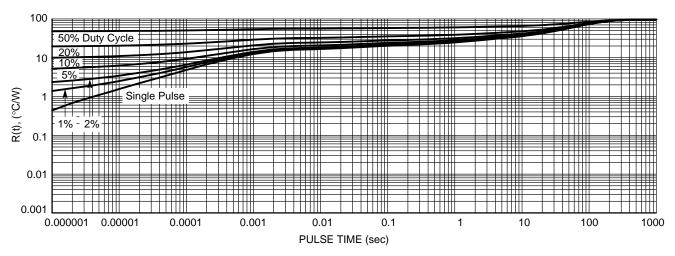
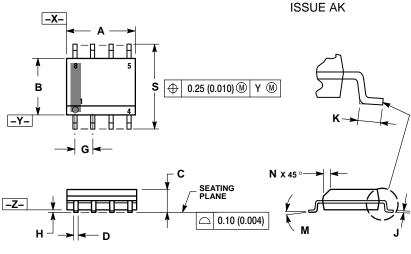


Figure 21. Transient Thermal Response (SOIC-8 Fused)
Cu Area = 645 mm²


ORDERING INFORMATION

Device	Output Voltage	Reset Delay Time, DT to GND	Reset Delay Time, DT to OUT	Package	Shipping [†]
NCV86601CD50R2G	5.0 V	8 ms	128 ms	SOIC-8 FUSED (Pb-Free)	2500 / Tape & Reel

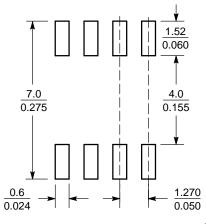
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07

0.25 (0.010) M Z

ΥS


ΧS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE
- MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT
- MAXIMUM MATERIAL CONDITION. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*

SCALE 6:1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative