

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

March 2016

FDB0300N1007L

N-Channel PowerTrench® MOSFET 100 V, 200 A, 3 m Ω

Features

- Max $r_{DS(on)}$ = 3 m Ω at V_{GS} = 10 V, I_D = 26 A
- Max $r_{DS(on)}$ = 4.5 m Ω at V_{GS} = 6 V, I_D = 20 A
- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low
- High Power and Current Handling Capability
- RoHS Compliant

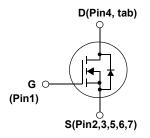
General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advance PowerTrench® process that has been especially tailored to minimize the on-state resistance while maintaining superior ruggedness and switching performance for industrial applications.

Applications

- Industrial Motor Drive
- Industrial Power Supply
- Industrial Automation
- Battery Operated tools
- Battery Protection
- Solar Inverters
- UPS and Energy Inverters
- Energy Storage
- Load Switch

1. Gate


2. Source/Kelvin Sense 3. Source/Kelvin Sense

4. Drain

5. Source 6. Source

7. Source

D2-PAK (TO263)

MOSFET Maximum Ratings $T_C = 25$ °C unless otherwise noted.

Symbol	Parame	eter		Ratings	Units	
V_{DS}	Drain to Source Voltage			100	V	
V_{GS}	Gate to Source Voltage			±20	V	
I _D	Drain Current -Continuous	T _C = 25°C	(Note 5)	200		
	-Continuous	T _C = 100°C	(Note 5)	140	Α	
	-Pulsed		(Note 4)	1090		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	843	mJ	
P_{D}	Power Dissipation	T _C = 25°C		250	W	
	Power Dissipation	T _A = 25°C	(Note 1a)	3.8	VV	
T _J , T _{STG}	Operating and Storage Junction Tempera	ature Range		-55 to +175	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Note 1)	0.6	°C/M/
$R_{\theta,JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	40	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB0300N1007L	FDB0300N1007L	D2-PAK-7L	330 mm	24 mm	800 units

Electrical Characteristics T_J = 25 °C unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25 °C		57		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V			±100	nA

On Characteristics (Note 2)

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	2	2.7	4	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		-12		mV/°C	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 26 A		2.4	3		
		$V_{GS} = 6 \text{ V}, I_D = 20 \text{ A}$		3.4	4.5	mΩ	
		V_{GS} = 10 V, I_D = 26 A, T_J = 150°C		4.9	11	[
g _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 26 A		85		S	

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	5925	8295	pF
C _{oss}	Output Capacitance		1220	1710	pF
C _{rss}	Reverse Transfer Capacitance		42	60	pF
R_g	Gate Resistance		2.7		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time			28	45	ns
t _r	Rise Time	V _{DD} = 50 V, I _D = 26 A	,	29	46	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10 V, R _{GEN} = 6	Ω	52	83	ns
t _f	Fall Time			18	32	ns
Q_g	Total Gate Charge	V _{GS} = 0 V to 10 V		81	113	nC
Qg	Total Gate Charge		_{DD} = 50 V,	44	62	
Q _{gs}	Gate to Source Gate Charge	I _D	= 26 A	24		nC
Q _{gd}	Gate to Drain "Miller" Charge			16		nC

Drain-Source Diode Characteristics

I _S	Maximum Continuous Drain to Source Diode	Maximum Continuous Drain to Source Diode Forward Current			200	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current				1090	Α
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 26 \text{ A}$ (Note 2)		0.8	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 26 A, di/dt = 100 A/μs		84	134	ns
Q _{rr}	Reverse Recovery Charge	ης – 26 A, αι/αι – 100 Α/μς		128	205	nC

Notes:

^{1.} R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a) 40 °C/W when mounted on a 1 in 2 pad of 2 oz copper. b) 62.5 °C/W when mounted on a minimum pad of 2 oz copper.

^{2.} Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0 %.

^{3.} E_{AS} of 843 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 75 A, V_{DD} = 90 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 108 A.

^{4.} Pulsed Id please refer to Figure "Forward Bias Safe Operating Area" for more details.

^{5.} Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

Typical Characteristics $T_J = 25$ °C unless otherwise noted.

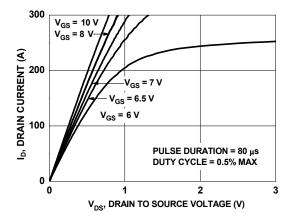


Figure 1. On Region Characteristics

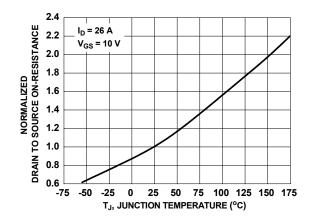


Figure 3. Normalized On Resistance vs. Junction Temperature

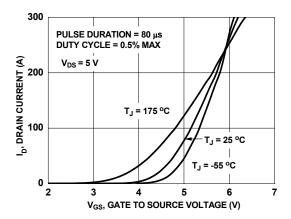


Figure 5. Transfer Characteristics

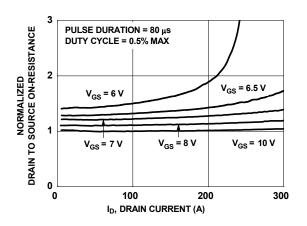


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

Figure 4. On-Resistance vs. Gate to Source Voltage

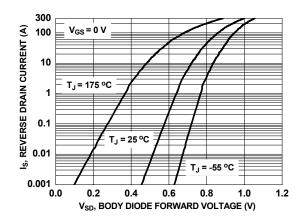


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

Typical Characteristics $T_J = 25$ °C unless otherwise noted.

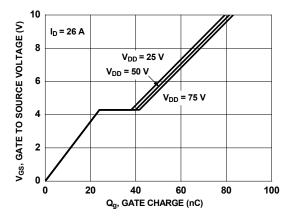


Figure 7. Gate Charge Characteristics

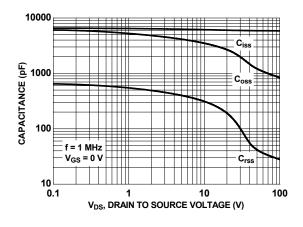


Figure 8. Capacitance vs. Drain to Source Voltage

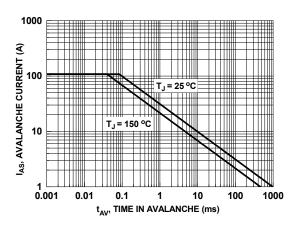


Figure 9. Unclamped Inductive Switching Capability

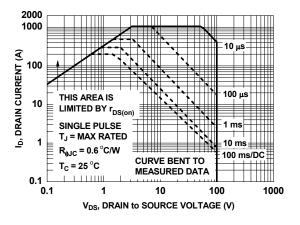


Figure 10. Forward Bias Safe Operating Area

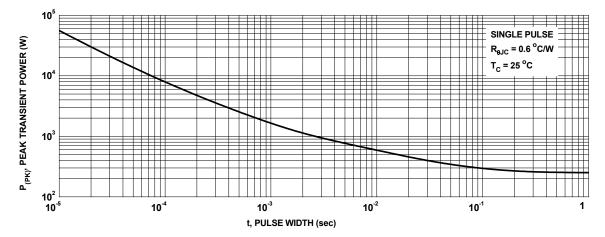


Figure 11. Single Pulse Maximum Power Dissipation

Typical Characteristics $T_J = 25$ °C unless otherwise noted.

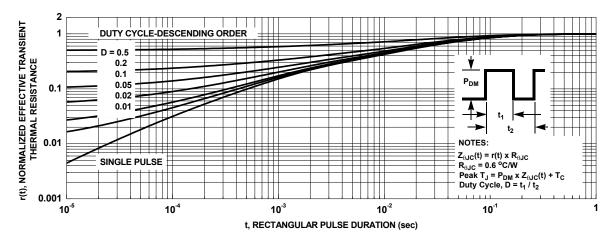
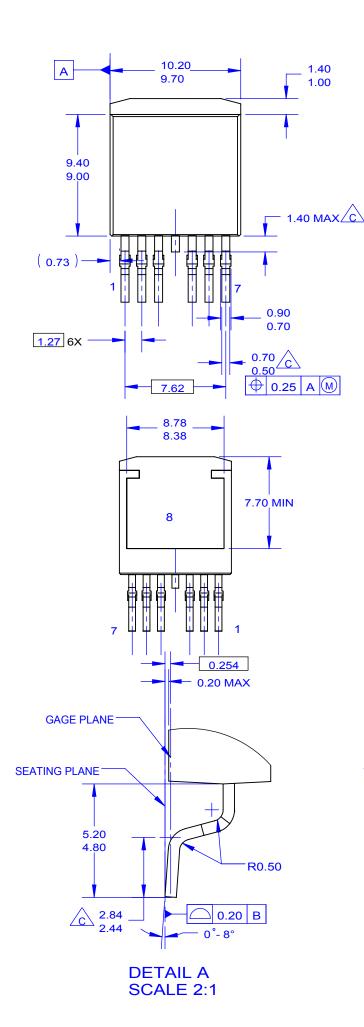
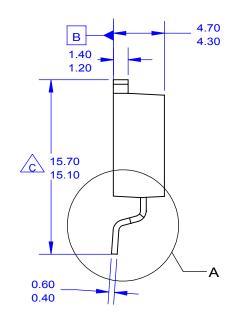




Figure 12. Junction-to-Case Transient Thermal Response Curve

(10.50) (8.40) (10,20) (3.45)(0.95) (1.27) 6X (7.62)

LAND PATTERN RECOMMENDATION

NOTES:

- A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.
- OUT OF JEDEC STANDARD VALUE.
 D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.
- E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- F. LAND PATTERN RECOMMENDATION PER IPC. TO127P1524X465-8N.
- G. DRAWING FILE NAME: TO263A07REV5.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative