Data Sheet

Description

The SFH250 is a low-cost 650nm receiver for optical data transmission with polymer optical fiber. This Si-pin-photodiode works fine with the AVAGO transmitter SFH757. According to the intensity of the incident light the SFH250 generates an analog photocurrent. In typical applications the SFH250 is operated in reverse-biasing and is installed in series with a resistor, where the voltage tapping is taken. By increasing the reverse voltage the switching times decrease and the SFH250 can be used for transmission speeds up to 100MBd.

Components of the SFH series are optimized for easy coupling. No fiber stripping is required, only the cut fiber has to be inserted into the selected SFH component.

SFH250

The transparent plastic package has an aperture where a 2.2 mm fiber end can be inserted. This very easy coupling method is extremely cost-effective.

SFH250V

The V-housing allows easy coupling of unconnectorized 2.2 mm polymer optical fiber by means of an axial locking screw.

Ordering Information

SFH250

SFH250V

Type	Ordering Code
SFH250	SP000063866
SFH250V	SP000063852

Features

- Fast Switching Time
- Sensitive in visible and near IR Range
- High linearity
- 2.2 mm aperture holds standard 980/1000/2200 um plastic fiber
- No fiber stripping required
- Molded microlens for efficient coupling

Plastic Direct Fiber Connector housing (V-housing)

- Locking screw attached to the connector
- Interference-free transmission by the light-tight housing
- Transmitter and receiver can be positioned flexibly
- No cross talk
- Auto insertable and wave solderable
- Supplied in tubes

Applications

- Household electronics
- Power electronics
- Optical networks
- Light barriers

Application Literature

AN \#	Description
5342	General information about the SFH series with Selection Guide and recommendations regarding System Planning and Mounting
5341	Information about Basic and Special Circuits for Transmitter and Receiver of the SFH series

Package Dimensions

SFH250

Dimensions in mm

SFH250V

Dimensions in mm

Package V-housing Color

SFH V-series components are color coded just like other Avago fiber optic components. The SFH757V transmitter has a white colored housing; the SFH250V and SFH551/11V receiver components have a black colored housing. This prevents mistakes while making connections. Product designation and date of manufacture are printed on the housing.

Package V-housing mounting pins

SFH V-series components have two pins that are electrically isolated from the inner circuit. The pins are only designed for mounting the V-housing to the PCB surface. This helps increase stability, which is needed during fixing the fiber end by the axial locking screw.

The retention force between the soldered mounting pins and the V-housing of the SFH component is about 20 N (with a vertical exertion of force). This is an approximate value.

Package V-housing axial locking screw

Components of the SFH V-series are equipped with an axial locking screw for easy coupling to the unconnectorized 2.2 mm polymer optical fiber. The force that is necessary to pull a jammed fiber out of the V-housing is typically 50 N (with a torque of 15 cNm for tightening the locking screw). This is an approximate value that is very dependent on the fiber and torque combination.

Package V-housing mounting pins

Package V-housing axial locking screw

Technical Data

Absolute Maximum Ratings							
Parameter	Symbol	Min	Typ	Max	Unit	Notes	Figure
Operating Temperature range	T_{C}	-40		+85	${ }^{\circ} \mathrm{C}$		
Storage Temperature range	$\mathrm{T}_{\text {stg }}$	-40		+100	${ }^{\circ} \mathrm{C}$		
Junction Temperature	T_{J}		100	${ }^{\circ} \mathrm{C}$			
Soldering Temperature (2mm from case bottom, $\mathrm{t} \leq 5 \mathrm{~s})$	TS_{S}		+260	${ }^{\circ} \mathrm{C}$			
Reverse Voltage	V_{R}						
Power Dissipation	$\mathrm{P}_{\text {tot }}$	30	V				
Thermal Resistance (Junction/Air)	$\mathrm{R}_{\text {thJA }}$		100	mW			
Electrostatic Discharge Voltage Capability	ESD		750	$\mathrm{~K} / \mathrm{W}$			
Electrostatic Discharge Voltage Capability	ESD		2000	V	1		

Notes:

1. ESD Capability for all Pins HBM(Human Body Model) according JESD22-A114
2. ESD Capability for all Pins MM (Machine Model) according JESD22-A115

Characteristics ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) unless otherwise specified

Parameter	Symbol	Min	Typ*	Max	Unit	Notes	Figure
Maximum Photosensitivity Wavelength	$\lambda_{\text {smax }}$		850		nm		1
Photosensitivity Spectral Range (S=80\%Smax)	λs	400		1100	nm		1
Dark Current $\left(\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	I_{R}		1	10	nA	2	5
Capacitance $\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{R}}=0\right)$	C_{S}		11		pF		5
Switching Times ($\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{R}}=5.0 \mathrm{~V}, \lambda=650 \mathrm{~nm}$) T_rise (10%... 90%) T_fall (90\%.. 10\%)	$\begin{aligned} & \mathrm{tr} \\ & \mathrm{tf} \end{aligned}$			$\begin{aligned} & 12 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	1,2	6,4
Switching Times ($\mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{V}_{\mathrm{R}}=30.0 \mathrm{~V}, \lambda=650 \mathrm{~nm}$) T_rise (10\%...90\%) T_fall (90\%.. 10\%)	$\begin{aligned} & \mathrm{tr} \\ & \mathrm{tf} \end{aligned}$		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	1,2	6,4
Photocurrent $\left(\mathrm{RL}=50 \Omega, \mathrm{Popt}=10 \mathrm{uW}, \mathrm{~V}_{\mathrm{R}}=5.0 \mathrm{~V}, \lambda=650 \mathrm{~nm}\right)$	Ip	2.4	4.4		$\mu \mathrm{A}$		2,3
Responsitivity $\left(\lambda=650 \mathrm{~nm}, \mathrm{R}_{\mathrm{L}}=50 \Omega\right)$	RIP	240	440		$\mu \mathrm{A} /$ mW	3	3
Photocurrent Temperature Coefficient ($\lambda=650 \mathrm{~nm}$)	TIP		-0.03		\% / K		2

[^0]Note:

1. Measured with optical input power -4dBm(mean) and pattern:" 1010 " at 5 MBd
2. Increase with temperature
3. Not strictly linear behavior. Actual value at high optical input power could vary from the typical value.

IP/ $\mathrm{IP} 25^{\circ} \mathrm{C}$

Figure 2. Typical Photocurrent depending on temperature

Figure 4.Test circuit

Figure 6. Typical Switching times; measured with pattern " 1010 " (5 MBd) at -4 dBm (mean) optical input power

For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. Obsoletes AV01-0711EN
AVOGO

[^0]: * Typical value $=$ mean value at $\mathrm{TA}=25^{\circ} \mathrm{C}$

