N

MICROCHIP

MPLAB® XC8 C Compiler
User’s Guide

55555555

Note the following details of the code protection feature on Microchip devices:
. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= 1SO/TS 16949 =

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KeeLoQ, KEeLOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC3? logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2012, Microchip Technology Incorporated, Printed in the
U.S.A,, All Rights Reserved.

‘::) Printed on recycled paper.

ISBN: 978-1-62076-375-9

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS52053B-page 2

© 2012 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP USER’S GUIDE

Table of Contents

] = Lo = PR PURRPPRRPR 7
Chapter 1. Compiler Overview
R [] o o 1N o 1 o] o P 11
1.2 Compiler Description and Documentationcccccoeeeeiiiiiini e, 11
1.3 DeVice DESCIIPLION .ocvveiiieeeeee e 12
Chapter 2. Common C Interface
P2 I [11 o To [Tox 1o] I PP PTPPPPPPPP 13
2.2 Background — The Desire for Portable Codeccccviviiieeiiiiiiiiiiiieeeeees 13
2.3 USING the CCl i e s e e e e e e e e e e aeeeaes 16
2.4 ANSI Standard RefinemMeNntuuuuuiuiimiiiiiiiiiiiiiieiieeieeeeeeeieeeeeeeeeeaeeeeeeeenes 17
2.5 ANSI Standard EXIENSIONSceviiiiiiiiiiiiiiiiiiiiiiie e 25
2.6 COMPIIET FEATUMES ..ottt ettt ettt ettt et e e e e e e e e e e e e e e e e e e aeaaees 39
Chapter 3. How To’s
G 700 R 1 70T [0 Tt i o] I PP PPTPPPPP 41
3.2 Installing and Activating the CoOmPpiler ..o 41
3.3 Invoking the COMPIIETuveiii i 43
3.4 WIItING SOUICE COUE ..ot ie ettt e e 46
3.5 Getting My Application to Do What | Wanteeeveiiiiiiiieieieiieeieeeeeeeee. 56
3.6 Understanding the Compilation ProCESSuueuvueviieiimeiiiriiieieieieeereeeeeeeene. 60
3.7 Fixing Code That Does NOt WOIKc.eeiiiiiiiiiiiiiiiiiiieeeeeee e 67
Chapter 4. XC8 Command-line Driver
g I 1 0T [T 4o o PP 71
4.2 InvoKing the COMPIIETeuiiie e e 72
4.3 The Compilation SEQUENCEoviiiiiiiiiiiiie et 75
4.4 RUNEIME FlES ettt bbbttt e e e et e et e eeeeeeeeeeeaeaaeeeas 81
4.5 COMPIIET OULPUL ...eeiiieiiiiiitie ettt e e e e 84
4.6 COMPIIEr IMESSAUES ...cevevivueiiiiieeieeeeeetis e e s e e e e et r e e e e e e e e et e eeaeeeeeerennans 86
4.7 XC8 DIVEI OPLIONS oeieiiiiiiiiiiit e ettt e et e e e s a e e e e s enirneee s 91
4.8 OPLioN DESCIIPLONS ...ceiiiiiiiiiie et e e ees 92
4.9 MPLAB IDE V8 Universal Toolsuite Equivalentscccccvvvvviciiiiieeennennns 117
4.10 MPLAB X Universal Toolsuite EqQUIValENtSccccoiiiiiiiiiiiieeeiniiiiieee, 124
Chapter 5. C Language Features
S A [V (o o [8 Tox 1o o I PP POUURPPP PR 131
5.2 ANSI C Standard ISSUESuuuuuuuuruemuienieerieesieneeeeeeeeeeeeeaeeeeeeeeereeereeereeeeee 131
5.3 Device-Related FEALUIESciiiiiiiiiiiiiiiiiiie 133
5.4 Supported Data Types and Variablesccccoiiiiiiiiiiiiiiiieeeeeeee 143
5.5 Memory Allocation and ACCESSoceuuuiiiiiiieiieeeeiss e e e et e e e e eeaenes 165

© 2012 Microchip Technology Inc. DS52053B-page 3

MPLAB® XC8 C Compiler User’s Guide

5.6 Operators and StateMENTSc.uuviiiiieeiiiiie e 179
T A R =T o | (T U= Vo[- U 181
LTS I U1 (o 1T] o F PR 182
o BN [1= (U o) £ PSSP 189
5.10 Main, Runtime Startup and RESEeLccovvviviiiiiiiiieee e 194
5.11 Library ROULINESuuuuiiiiiieiieieiiie st e e e e e e e e e s 198
5.12 Mixing C and Assembly COdecooviiiiiiiiiiiiie 200
G T @ o1 411 1o 1 208
LT o =T o] o Tt 11 T o USSR 210
T R T T o T d oo | = .1 222
Chapter 6. Macro Assembler
ST R [0 {0 To 18 T 70 [P 241
6.2 ASSEMDIEr USAQE ..oovviiiiii i 241
B.3 OPLIONS i 242
6.4 MPLAB XC8 Assembly Languageccoovviiiiiiii e 246
6.5 Assembly-Level Optimizationscooovieiiii s 268
6.6 ASSEMDIY LISt FIlES ..vvvviiiii e e 269
Chapter 7. Linker
% R 1911 {00 18 T 70 [P 277
2K] o 1= - 1o 1 277
7.3 Relocation and PSECLScoocveiiiiiee e 285
A\ = T o TN 1= 286
Chapter 8. Utilities
TR a1 oo |8 oz 1o o RS 291
8.2 LIDIari@niiieeii i 291
8.3 OBITOHEX ..ottt et e e s e e e e e e e e e b reeeeees 295
A CREF ... e 297
8.5 CROMWIELL ..ottt e e e e e e e e e 300
8.6 HEXMATE ...ttt e e e e e e e e e e e e e e e 303
Appendix A. Library Functions

Appendix B.
Appendix C.

Error and Warning Messages
Implementation-Defined Behavior

C.1 Translation (G.3.1)uuuiiiiieiiiiiiii ittt e e e e 479
O =l o\ o]] 04[] o] B (T 702 P 479
C.31deNtifIErs (G.3.3) ittt 480
O O o= 1= ox (=] 3 (€7 70 480
C.5INTEGETS (G.3.5) ittt 481
C.6 FIoating-Point (G.3.6) ...ccieeiiiiiieiiiii e 482
C.7 Arrays and POINtErS (G.3.7) ioouiieiiiieeiiiiiiieee et 482
OB S Lo To [(= R (C T X =) I 482
C.9 Structures, Unions, Enumerations, and Bit-Fields (G.3.9)ccccccceernnnne 483
C.10 QUAIIfIErS (G.3.10) .eieiiuieiiieiiiiie ettt 483
C.11 DeCIarators (G.3.11) ...eeieeeiiiiiieiiiieeeee ettt e e e e e e 483

DS52053B-page 4

© 2012 Microchip Technology Inc.

C.12 StatementS (G.3.12)uuiiiiiieeiiiiiiie e 483

C.13 Preprocessing Directives (G.3.13) ..ouuuiiiiiiieiiiieiiiiis s ee e e e ee e 484
C.14 Library FUNCHONS (G.3.14) ..ocoiiiiiiiiiiiie et 485
(€1 13- 1 PSRRI 487
10 1 PP EPPRRTRRRR 507
Worldwide Sales and SEIrVICE ..o 518

© 2012 Microchip Technology Inc. DS52053B-page 5

MPLAB® XC8 C Compiler User’s Guide

NOTES:

DS52053B-page 6 © 2012 Microchip Technology Inc.

MPLAB® XC8 C COMPILER

MICROCHIP USER’S GUIDE

Preface

NOTICE TO CUSTOMERS

document.

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA", where “XXXXX" is the document number and “A” is the revision level of the

For the most up-to-date information on development tools, see the MPLAB® IDE online help.
Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
MPLAB® XC8 C Compiler User’s Guide. Items discussed in this chapter include:

Document Layout

Conventions Used in this Guide

Warranty Registration

Recommended Reading

The Microchip Web Site

Development Systems Customer Change Notification Service
Customer Support

Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MPLAB XC8 C Compiler. The manual layout
is as follows:

Chapter 1. Compiler Overview

Chapter 3. How To’s

Chapter 4. XC8 Command-line Driver
Chapter 5. C Language Features

Chapter 6. Macro Assembler

Chapter 7. Linker

Chapter 8. Utilities

Appendix A. Library Functions

Appendix B. Error and Warning Messages
Appendix C. Implementation-Defined Behavior
Glossary

Index

© 2012 Microchip Technology Inc. DS52053B-page 7

MPLAB® XC8 C Compiler User’s Guide

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User'’s Guide

Emphasized text

...Is the only compiler...

dialog

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”

Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

Atab

Click the Power tab

N‘Rnnnn

A number in verilog format,
where N is the total number of
digits, Ris the radix and nis a
digit.

40010, 2'hF1

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier New font:

Plain Courier New

Sample source code

#defi ne START

Filenames aut oexec. bat

File paths c:\nccl8\h

Keywords _asm _endasm static
Command-line options - Qpa+, -Opa-

Bit values 0, 1

Constants OxFF, ‘A

Italic Courier New

A variable argument

file.o,wherefilecanbe
any valid filename

Square brackets []

Optional arguments

nccl8 [options] file
[opti ons]

Curly brackets and pipe
character: { |}

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]1}

Ellipses...

Replaces repeated text

var _name [,
var _nane. . .|

Represents code supplied by
user

void main (void)
{
}

WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly.
Sending in the Warranty Registration Card entitles users to receive new product
updates. Interim software releases are available at the Microchip web site.

RECOMMENDED READING

This user’s guide describes how to use Chapter Name. Other useful documents are
listed below. The following Microchip documents are available and recommended as
supplemental reference resources.

DS52053B-page 8

© 2012 Microchip Technology Inc.

Preface

Readme for Chapter Name

For the latest information on using Chapter Name, read the “Readne f or Chapter
Nare. t xt ” file (an ASCII text file) in the Readmes subdirectory of the MPLAB® IDE
installation directory. The Readme file contains update information and known issues
that may not be included in this user’s guide.

Readme Files

For the latest information on using other tools, read the tool-specific Readme files in
the Readmes subdirectory of the MPLAB IDE installation directory. The Readme files
contain update information and known issues that may not be included in this user’s
guide.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

« General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

e Compilers — The latest information on Microchip C compilers and other language
tools. These include the MPLAB® C18 and MPLAB® C30 C compilers; MPASM™
and MPLAB® ASM30 assemblers; MPLINK™ and MPLAB LINK30 object linkers;
and MPLIB™ and MPLAB® LIB30 object librarians.

« Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB® ICE 2000 and MPLAB ICE 4000.

¢ In-Circuit Debuggers — The latest information on the Microchip In-Circuit
Debugger, MPLAB® ICD 2.

« MPLAB® IDE — The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB® IDE, MPLAB® SIM simulator, MPLAB® IDE Project Man-
ager and general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB® PM3 and PRO MATE® Il device programmers and the PICSTART®
Plus and PICkit™ 1 development programmers.

© 2012 Microchip Technology Inc. DS52053B-page 9

MPLAB® XC8 C Compiler User’s Guide

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

* Field Application Engineer (FAE)

» Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision B (July 2012)

« Added 'how tos' chapter.

« Expanded section relating to PIC18 erratas.

« Updated the section relating to compiler optimization settings.

* Updated MPLAB v8 and MPLAB X IDE project option dialogs.

« Added sections describing PIC18 far qualifier and inline function qualifier.

« Expanded section describing the operation of the main() function

« Expanded information about equivalent assembly symbols for Baseline parts.
« Updated the table of predefined macro symbols.

* Added section on #pr agna addr qual

» Added sections to do with inline-ing functions

« Updated diagrams and text associated with call graphs in the list file

« Updated library function section to be consistent with packaged libraries

» Added new compiler warnings and errors.

* Added new chapter describing the Common Compiler Interface Standard (CCI)

Revision A (February 2012)

Initial release of this document.

DS52053B-page 10

© 2012 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP USER'’S GUIDE

Chapter 1. Compiler Overview

1.1 INTRODUCTION

This chapter is an overview of the MPLAB XC8 C Compiler, including these topics.

« Compiler Description and Documentation
 Device Description

1.2 COMPILER DESCRIPTION AND DOCUMENTATION

The MPLAB® XC8 C Compiler is a free-standing, optimizing ANSI C compiler. It sup-
ports all 8-bit PIC® microcontrollers: PIC10, PIC12, PIC16 and PIC18 series devices,
as well as the PIC14000 device.

The compiler is available for several popular operating systems, including 32- and
64-bit Windows®, Linux and Apple OS X.

The compiler is available in three operating modes: Free, Standard or PRO. The Stan-
dard and PRO operating modes are licensed modes and require a serial number to
enable them. Free mode is available for unlicensed customers. The basic compiler
operation, supported devices and available memory are identical across all modes.
The modes only differ in the level of optimization employed by the compiler.

1.2.1 Conventions

Throughout this manual, the term “compiler” is used. It can refer to all, or a subset of,
the collection of applications that comprise the MPLAB XC8 C Compiler. When it is not
important to identify which application performed an action, it will be attributed to the
compiler.

Likewise, “compiler” is often used to refer to the command-line driver. Although specif-
ically, the driver for the MPLAB XC8 C Compiler package is called xc8. The driver and
its options are discussed in Section 4.7 “XC8 Driver Options”. Accordingly, “compiler
options” commonly relates to command-line driver options.

In a similar fashion, “compilation” refers to all or a selection of steps involved in
generating source code into an executable binary image.

© 2012 Microchip Technology Inc. DS52053B-page 11

MPLAB® XC8 C Compiler User’s Guide

1.3 DEVICE DESCRIPTION

This compiler supports 8-bit Microchip PIC devices with baseline, Mid-Range,
Enhanced Mid-Range, and PIC18 cores. The following descriptions indicate the
distinctions within those device cores:

The baseline core uses a 12-bit-wide instruction set and is available in PIC10, PIC12
and PIC16 part numbers.

The Mid-Range core uses a 14-bit-wide instruction set that includes more instructions
than the baseline core. It has larger data memory banks and program memory pages,
as well. It is available in PIC12, PIC14 and PIC16 part numbers.

The Enhanced Mid-Range core also uses a 14-bit-wide instruction set, but incorporates
additional instructions and features. There are both PIC12 and PIC16 part numbers
that are based on the Enhanced Mid-Range core.

The PIC18 core instruction set is 16-bits wide and features additional instructions and
an expanded register set. PIC18 core devices have part numbers that begin with
PIC18.

The compiler takes advantage of the target device’s instruction set, addressing modes
memory and registers whenever possible.

See Section 4.8.21 “--CHIPINFO: Display List of Supported Devices” for
information on finding the full list of devices supported by the compiler.

DS52053B-page 12

© 2012 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP USER'’S GUIDE

Chapter 2. Common C Interface

2.1 INTRODUCTION

The Common C Interface (CCI) is available with all MPLAB XC C compilers and is
designed to enhance code portability between these compilers. For example,
CCl-conforming code would make it easier to port from a PIC18 MCU using the MPLAB
XC8 C compiler to a PIC24 MCU using the MPLAB XC16 C compiler.

The CCl assumes that your source code already conforms to the ANSI Standard. If you
intend to use the CClI, it is your responsibility to write code that conforms. Legacy proj-
ects will need to be migrated to achieve conformance. A compiler option must also be
set to ensure that the operation of the compiler is consistent with the interface when the
project is built.

The following topics are examined in this chapter of the MPLAB XC8 C Compiler User’s
Guide:

* ANSI Standard Extensions
« Using the CCI

* ANSI Standard Refinement
* ANSI Standard Extensions

2.2 BACKGROUND - THE DESIRE FOR PORTABLE CODE

All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different
execution environment than that for which it was written. Rarely can code be one hun-
dred percent portable, but the more tolerant it is to change, the less time and effort it
takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices,
but this is only part of the situation. The same code could be compiled for the same
target but with a different compiler. Differences between those compilers might lead to
the code failing at compile time or runtime, so this must be considered as well.

You may only write code for one target device and only use one brand of compiler, but
if there is no regulation of the compiler’s operation, simply updating your compiler
version may change your code’s behavior.

Code must be portable across targets, tools, and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the com-
piler vendors can base their products on different technologies, implement different fea-
tures and code syntax, or improve the way their product works. Many a great compiler
optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed
and code is more portable. The American National Standards Institute (ANSI) pub-
lishes standards for many disciplines, including programming languages. The ANSI C
Standard is a universally adopted standard for the C programming language.

© 2012 Microchip Technology Inc. DS52053A-page 13

MPLAB® XC8 C Compiler User’s Guide

221 The ANSI Standard

The ANSI C Standard has to reconcile two opposing goals: freedom for compilers ven-
dors to target new devices and improve code generation, with the known functional
operation of source code for programmers. If both goals can be met, source code can
be made portable.

The standard is implemented as a set of rules which detail not only the syntax that a
conforming C program must follow, but the semantic rules by which that program will
be interpreted. Thus, for a compiler to conform to the standard, it must ensure that a
conforming C program functions as described by the standard.

The standard describes implementation, the set of tools and the runtime environment
on which the code will run. If any of these change, e.g., you build for, and run on, a dif-
ferent target device, or if you update the version of the compiler you use to build, then
you are using a different implementation.

The standard uses the term behavior to mean the external appearance or action of the
program. It has nothing to do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting,
some specifications appear somewhat vague. For example, the standard states that an
i nt type must be able to hold at least a 16-bit value, but it does not go as far as saying
what the size of an i nt actually is; and the action of right-shifting a signed integer can
produce different results on different implementations; yet, these different results are
still ANSI C compliant.

If the standard is too strict, device architectures may not allow the compiler to conform.*
But, if it is too weak, programmers would see wildly differing results within different
compilers and architectures, and the standard would loose its effectiveness.

The standard organizes source code whose behavior is not fully defined into groups
that include the following behaviors:

Implementation-defined behavior

This is unspecified behavior where each implementation documents how the choice
is made.

Unspecified behavior

The standard provides two or more possibilities and imposes no further requirements
on which possibility is chosen in any particular instance.

Undefined behavior
This is behavior for which the standard imposes no requirements.

Code that strictly conforms to the standard does not produce output that is dependent
on any unspecified, undefined, or implementation-defined behavior. The size of an

i nt, which we used as an example earlier, falls into the category of behavior that is
defined by implementation. That is to say, the size of an i nt is defined by which com-
piler is being used, how that compiler is being used, and the device that is being tar-
geted.

All the MPLAB XC compilers conform to the ANS X3.159-1989 Standard for program-
ming languages (with the exception of the XC8 compiler’s inability to allow recursion,

as mentioned in the footnote). This is commonly called the C89 Standard. Some fea-

tures from the later standard, C99, are also supported.

1. Case in point: The mid-range PIC® microcontrollers do not have a data stack. Because a compiler
targeting this device cannot implement recursion, it (strictly speaking) cannot conform to the ANSI
C Standard. This example illustrate a situation in which the standard is too strict for mid-range
devices and tools.

DS52053A-page 14

© 2012 Microchip Technology Inc.

Common C Interface

For freestanding implementations — or for what we typically call embedded applications
—the standard allows non-standard extensions to the language, but obviously does not
enforce how they are specified or how they work. When working so closely to the
device hardware, a programmer needs a means of specifying device setup and inter-
rupts, as well as utilizing the often complex world of small-device memory
architectures. This cannot be offered by the standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and
compiler vendors, programmers need to consider the implementation-defined behavior
of their tools and the probability that they may need to use extensions to the C language
that are non-standard. Both of these circumstances can have an impact on code por-
tability.

2.2.2 The Common C Interface

The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier
for programmers to achieve consistent outcomes on all Microchip devices when using
any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

Refinement of the ANSI C Standard

The CCI documents specific behavior for some code in which actions are implemen-
tation-defined behavior under the ANSI C Standard. For example, the result of
right-shifting a signed integer is fully defined by the CCI. Note that many
implementation-defined items that closely couple with device characteristics, such as
the size of ani nt , are not defined by the CCI.

Consistent syntax for non-standard extensions

The CCI non-standard extensions are mostly implemented using keywords with a uni-
form syntax. They replace keywords, macros and attributes that are the native com-
piler implementation. The interpretation of the keyword may differ across each com-
piler, and any arguments to the keywords may be device specific.

Coding guidelines

The CCI may indicate advice on how code should be written so that it can be ported
to other devices or compilers. While you may choose not to follow the advice, it will
not conform to the CCI.

© 2012 Microchip Technology Inc. DS52053A-page 15

MPLAB® XC8 C Compiler User’s Guide

2.3 USING THE CCI

The CCI allows enhanced portability by refining implementation-defined behavior and
standardizing the syntax for extensions to the language.

The CCl is something you choose to follow and put into effect, thus it is relevant for new
projects, although you may choose to modify existing projects so they conform.

For your project to conform to the CCI, you must do the following things.
Enable the CCI

Select the MPLAB IDE widget Use CCI Syntax in your project, or use the
command-line option that is equivalent.

Include <xc.h>in every module
Some CCI features are only enabled if this header is seen by the compiler.

Ensure ANSI compliance
Code that does not conform to the ANSI C Standard does not confirm to the CCI.

Observe refinements to ANSI by the CCI
Some ANSI implementation-defined behavior is defined explicitly by the CCI.

Use the CCl extensions to the language
Use the CCI extensions rather than the native language extensions

The next sections detail specific items associated with the CCI. These items are seg-
regated into those that refine the standard, those that deal with the ANSI C Standard
extensions, and other miscellaneous compiler options and usage. Guidelines are indi-
cated with these items.

If any implementation-defined behavior or any non-standard extension is not discussed
in this document, then it is not part of the CCI. For example, GCC case ranges, label
addresses and 24-bit short | ong types are not part of the CCI. Programs which use
these features do not conform to the CCI. The compiler may issue a warning or error
to indicate when you use a non-CCl feature and the CCl is enabled.

DS52053A-page 16

© 2012 Microchip Technology Inc.

Common C Interface

2.4 ANSI STANDARD REFINEMENT

The following topics describe how the CCI refines the implementation-defined
behaviors outlined in the ANSI C Standard.

24.1 Source File Encoding

Under the CClI, a source file must be written using characters from the 7-bit ASCII set.
Lines may be terminated using a line feed (\n") or carriage return (\r') that is immedi-
ately followed by a line feed. Escaped characters may be used in character constants
or string literals to represent extended characters not in the basic character set.

24.11 EXAMPLE

The following shows a string constant being defined that uses escaped characters.
const char nyName[] = "Bj\370rk\n";

2412 DIFFERENCES
All compilers have used this character set.
2.4.1.3 MIGRATION TO THE CCI

No action required.

2.4.2 The Prototype for mai n

The prototype for the mai n() function is

int main(void);

2421 EXAMPLE

The following shows an example of how mai n() might be defined

int mai n(voi d)

whi | e(1)
process();

}
2.4.2.2 DIFFERENCES
The 8-bit compilers used a voi d return type for this function.

2.4.2.3 MIGRATION TO THE CCI

Each program has one definition for the mai n() function. Confirm the return type for
mai n() in all projects previously compiled for 8-bit targets.

2.4.3 Header File Specification

Header file specifications that use directory separators do not conform to the CCI.

243.1 EXAMPLE

The following example shows two conforming include directives.

#i ncl ude <usb_mai n. h>
#i ncl ude "gl obal . h"

© 2012 Microchip Technology Inc. DS52053A-page 17

MPLAB® XC8 C Compiler User’s Guide

2.43.2 DIFFERENCES

Header file specifications that use directory separators have been allowed in previous
versions of all compilers. Compatibility problems arose when Windows-style separa-
tors “\ " were used and the code compiled under other host operating systems. Under
the CCI, no directory specifiers should be used.

2.4.3.3 MIGRATION TO THE CCI

Any #i ncl ude directives that use directory separators in the header file specifications
should be changed. Remove all but the header file name in the directive. Add the direc-
tory path to the compiler’s include search path or MPLAB IDE equivalent. This will force
the compiler to search the directories specified with this option.

For example, the following code:
#i ncl ude <inc/lcd. h>

should be changed to:

#i ncl ude <l cd. h>

and the path to the i nc directory added to the compiler’s header search path in your
MPLAB IDE project properties, or on the command-line as follows:

-1lcd

24.4 Include Search Paths
When you include a header file under the CClI, the file should be discoverable in the
paths searched by the compiler detailed below.

For any header files specified in angle bracket delimiters < >, the search paths should
be those specified by - | options (or the equivalent MPLAB IDE option), then the stan-
dard compiler include directories. The - | options are searched in the order in which
they are specified.

For any file specified in quote characters " ", the search paths should first be the cur-
rent working directory. In the case of an MPLAB X project, the current working directory
is the directory in which the C source file is located. If unsuccessful, the search paths
should be the same directories searched when the header files is specified in angle
bracket delimiters.

Any other options to specify search paths for header files do not conform to the CCI.

2441 EXAMPLE

If including a header file as in the following directive
#i ncl ude "nyd obal s. h"

The header file should be locatable in the current working directory, or the paths spec-
ified by any - | options, or the standard compiler directories. If it is located elsewhere,
this does not conform to the CCI.

2442 DIFFERENCES
The compiler operation under the CCl is not changed. This is purely a coding guide line.

2443 MIGRATION TO THE CCI

Remove any option that specifies header file search paths other than the - | option (or
the equivalent MPLAB IDE option), and use the - | option in place of this. Ensure the
header file can be found in the directories specified in this section.

DS52053A-page 18

© 2012 Microchip Technology Inc.

Common C Interface

245 The Number of Significant Initial Characters in an ldentifier

At least the first 255 characters in an identifier (internal and external) are significant.
This extends upon the requirement of the ANSI C Standard which states a lower num-
ber of significant characters are used to identify an object.

2451 EXAMPLE

The following example shows two poorly named variables, but names which are
considered unique under the CCI.

int stateO PortBwenTheQper at or HasSel ect edAut omat i cMbdeAndMot or | sRunni ngFast ;
int stateCf Port BwhenTheQper at or HasSel ect edAut omat i cModeAndMot or | sRunni ngSl ow;

2452 DIFFERENCES

Former 8-bit compilers used 31 significant characters by default, but an option allowed
this to be extended.

The 16- and 32-bit compilers did not impose a limit on the number of significant char-
acters.

2453 MIGRATION TO THE CCI

No action required. You may take advantage of the less restrictive naming scheme.

2.4.6 Sizes of Types

The sizes of the basic C types, for example char, i nt and | ong, are not fully defined
by the CCI. These types, by design, reflect the size of registers and other architectural
features in the target device. They allow the device to efficiently access objects of this
type. The ANSI C Standard does, however, indicate minimum requirements for these
types, as specifiedin<lim ts. h>,

If you need fixed-size types in your project, use the types defined in <st di nt . h>, e.qg.,
uint8_t orintl1l6_t.These types are consistently defined across all XC compilers,
even outside of the CCI.

Essentially, the C language offers a choice of two groups of types: those that offer sizes
and formats that are tailored to the device you are using; or those that have a fixed size,
regardless of the target.

24.6.1 EXAMPLE

The following example shows the definition of a variable, nat i ve, whose size will allow
efficient access on the target device; and a variable, f i xed, whose size is clearly indi-
cated and remains fixed, even though it may not allow efficient access on every device.

int native;
intl6_t fixed;

2.4.6.2 DIFFERENCES
This is consistent with previous types implemented by the compiler.

2.4.6.3 MIGRATION TO THE CCI

If you require a C type that has a fixed size, regardless of the target device, use one of
the types defined by <st di nt . h>.

© 2012 Microchip Technology Inc. DS52053A-page 19

MPLAB® XC8 C Compiler User’s Guide

2.4.7 Plain char Types

The type of a plain char isunsi gned char. Itis generally recommended that all def-
initions for the char type explicitly state the signedness of the object.

24.7.1 EXAMPLE

The following example

char foobar;

defines an unsi gned char object called f oobar.
2.4.7.2 DIFFERENCES

The 8-bit compilers have always treated plain char as an unsigned type.

The 16- and 32-bit compilers used si gned char as the default plain char type. The
- f unsi gned- char option on those compilers changed the default type to be
unsi gned char.

2.4.7.3 MIGRATION TO THE CCI

Any definition of an object defined as a plain char and using the 16- or 32-bit compilers
needs review. Any plain char that was intended to be a signed quantity should be
replaced with an explicit definition, for example.

signed char foobar;

You may use the - f unsi gned- char option on XC16/32 to change the type of plain
char, but since this option is not supported on XC8, the code is not strictly conforming.

2.4.8 Signed Integer Representation

The value of a signed integer is determined by taking the two’s complement of the inte-
ger.

2481 EXAMPLE

The following shows a variable, t est , that is assigned the value -28 decimal.
signed char test = OxE4;

2.4.8.2 DIFFERENCES

All compilers have represented signed integers in the way described in this section.

2.4.8.3 MIGRATION TO THE CCI

No action required.

DS52053A-page 20

© 2012 Microchip Technology Inc.

Common C Interface

2.4.9 Integer conversion

When converting an integer type to a signed integer of insufficient size, the original
value is truncated from the most-significant bit to accommodate the target size.

2491 EXAMPLE

The following shows an assignment of a value that will be truncated.

signed char destination;
unsi gned int source = 0x12FE;
destinati on = source;

Under the CCI, the value of dest i nat i on after the alignment will be -2 (i.e., the bit
pattern OXFE).

2.49.2 DIFFERENCES

All compilers have performed integer conversion in an identical fashion to that
described in this section.

2493 MIGRATION TO THE CCI

No action required.

2.4.10 Bit-wise Operations on Signed Values

Bitwise operations on signed values act on the two’s complement representation,
including the sign bit. See also Section 2.4.11 “Right-shifting Signed Values”.

2.4.10.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND oper-
ation.

signed char output, input = -13;
out put = input & OX7E;

Under the CClI, the value of out put after the assignment will be 0x72.

2.4.10.2 DIFFERENCES

All compilers have performed bitwise operations in an identical fashion to that
described in this section.

2.4.10.3 MIGRATION TO THE CCI
No action required.

2.4.11 Right-shifting Signed Values

Right-shifting a signed value will involve sign extension. This will preserve the sign of
the original value.

24.11.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND

operation.

signed char input, output = -13;

output = input >> 3;

Under the CCI, the value of out put after the assignment will be -2 (i.e., the bit pattern
OXFE).

© 2012 Microchip Technology Inc. DS52053A-page 21

MPLAB® XC8 C Compiler User’s Guide

2.4.11.2 DIFFERENCES

All compilers have performed right shifting as described in this section.

2.4.11.3 MIGRATION TO THE CCI

No action required.

2.4.12 Conversion of Union Member Accessed Using Member With
Different Type

If a union defines several members of different types and you use one member identi-
fier to try to access the contents of another (whether any conversion is applied to the
result) is implementation-defined behavior in the standard. In the CCI, no conversion is
applied and the bytes of the union object are interpreted as an object of the type of the
member being accessed, without regard for alignment or other possible invalid condi-
tions.

2.4.12.1 EXAMPLE

The following shows an example of a union defining several members.

uni on {
signed char code;
unsi gned i nt data;
float offset;

} foobar;

Code that attempts to extract of f set by reading dat a is not guaranteed to read the
correct value.

float result;

result = foobbar. data;

2.4.12.2 DIFFERENCES

All compilers have not converted union members accessed via other members.

2.4.12.3 MIGRATION TO THE CCI

No action required.

2.4.13 Default Bit-field int Type

The type of a bit-field specified as a plain i nt will be identical to that of one defined
using unsi gned i nt . This is quite different to other objects where the types i nt,

si gned and si gned i nt are synonymous. Itis recommended that the signedness of
the bit-field be explicitly stated in all bit-field definitions.

2.4.13.1 EXAMPLE

The following shows an example of a structure tag containing bit-fields which are
unsigned integers and with the size specified.

struct OUTPUTS {
int direction :1;
int parity 1 3;
int val ue 1 4;

I

DS52053A-page 22

© 2012 Microchip Technology Inc.

Common C Interface

2.4.13.2 DIFFERENCES

The 8-bit compilers have previously issued a warning if type i nt was used for bit-fields,
but would implement the bit-field with an unsi gned i nt type.

The 16- and 32-bit compilers have implemented bit-fields defined using i nt as having
asigned int type, unless the option - f unsi gned- bi t fi el ds was specified.

2.4.13.3 MIGRATION TO THE CCI

Any code that defines a bit-field with the plaini nt type should be reviewed. If the inten-
tion was for these to be signed quantities, then the type of these should be changed to
si gned i nt, for example, in:
struct WAYPT ({

int |og 1 3;

int direction 14,
s
the bit-field type should be changed to si gned i nt, as in:

struct WAYPT {
signed int |og 13,
signed int direction :4;

b
2.4.14 Bit-fields Straddling a Storage Unit Boundary

Whether a bit-field can straddle a storage unit boundary is implementation-defined
behavior in the standard. In the CClI, bit-fields will not straddle a storage unit boundary;
a new storage unit will be allocated to the structure, and padding bits will fill the gap.

Note that the size of a storage unit differs with each compiler as this is based on the
size of the base data type (e.g., i nt) from which the bit-field type is derived. On 8-bit
compilers this unit is 8-bits in size; for 16-bit compilers, it is 16 bits; and for 32-bit com-
pilers, it is 32 bits in size.

2.4.14.1 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
unsigned first : 6;
unsi gned second : 6;
} order;

Under the CCI and using XC8, the storage allocation unit is byte sized. The bit-field
second, will be allocated a new storage unit since there are only 2 bits remaining in
the first storage unit in which f i r st is allocated. The size of this structure, or der, will
be 2 bytes.

2.4.14.2 DIFFERENCES

This allocation is identical with that used by all previous compilers.
2.4.14.3 MIGRATION TO THE CCI

No action required.

2.4.15 The Allocation Order of Bits-field

The memory ordering of bit-fields into their storage unit is not specified by the ANSI C
Standard. In the CCI, the first bit defined will be the least significant bit of the storage
unit in which it will be allocated.

© 2012 Microchip Technology Inc. DS52053A-page 23

MPLAB® XC8 C Compiler User’s Guide

2.4.15.1 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
unsigned lo : 1;
unsi gned nmd :6;
unsigned hi : 1;
} foo;

The bit-field I o will be assigned the least significant bit of the storage unit assigned to
the structure f 00. The bit-field m d will be assigned the next 6 least significant bits, and
hi , the most significant bit of that same storage unit byte.

2.4.15.2 DIFFERENCES

This is identical with the previous operation of all compilers.
2.4.15.3 MIGRATION TO THE CCI

No action required.

2.4.16 The NULL macro

The NULL macro is defined in <st ddef . h>; however, its definition is implementa-
tion-defined behavior. Under the CCI, the definition of NULL is the expression (0) .

2.4.16.1 EXAMPLE

The following shows a pointer being assigned a null pointer constant via the NULL
macro.

int * ip = NULL;

The value of NULL, (0), is implicitly cast to the destination type.

2.4.16.2 DIFFERENCES

The 32-bit compilers previously assigned NULL the expression ((void *)0).
2.4.16.3 MIGRATION TO THE CCI

No action required.

2.4.17 Floating-point sizes

Under the CCI, floating-point types must not be smaller than 32 bits in size.
24.17.1 EXAMPLE

The following shows the definition for out Y, which will be at least 32-bit in size.
float out;

2.4.17.2 DIFFERENCES

The 8-bit compilers have allowed the use of 24-bit f | oat and doubl e types.

2.4.17.3 MIGRATION TO THE CCI

When using 8-bit compilers, the f | oat and doubl e type will automatically be made
32 bits in size once the CCI mode is enabled. Review any source code that may have
assumed a f | oat or doubl e type and may have been 24 bits in size.

No migration is required for other compilers.

DS52053A-page 24

© 2012 Microchip Technology Inc.

Common C Interface

2.5 ANSI STANDARD EXTENSIONS

The following topics describe how the CCI provides device-specific extensions to the
standard.

251 Generic Header File

A single header file <xc. h> must be used to declare all compiler- and device-specific
types and SFRs. You must include this file into every module to conform with the CCI.
Some CCI definitions depend on this header being seen.

25.11 EXAMPLE

The following shows this header file being included, thus allowing conformance with the
CCl, as well as allowing access to SFRs.

#i ncl ude <xc. h>

2.5.1.2 DIFFERENCES

Some 8-bit compilers used <ht c. h> as the equivalent header. Previous versions of
the 16- and 32-bit compilers used a variety of headers to do the same job.

2.5.1.3 MIGRATION TO THE CCI

Change:
#i ncl ude <htc. h>

used previously in 8-bit compiler code, or family-specific header files as in the following
examples:

#i ncl ude <p32xxxx. h>

#i ncl ude <p30f xxxx. h>
#i ncl ude <p33Fxxxx. h>
#i ncl ude <p24Fxxxx. h>
#i ncl ude "p30f6014. h"

to:
#i ncl ude <xc. h>

2.5.2 Absolute addressing

Variables and functions can be placed at an absolute address by using the __at ()
construct.qualifier Note that XC16/32 may require the variable or function to be placed
in a special section for absolute addressing to work. Stack-based (aut o and parame-
ter) variables cannot use the __at () specifier.

2.5.21 EXAMPLE

The following shows two variables and a function being made absolute.
int scanMode __at (0x200);
const char keys[] __at(123) ={ 'r’, 's’, 'u, 'd};

int modi fy(int x) __at(0x1000) {
return x * 2 + 3;
}

2.5.2.2 DIFFERENCES

The 8-bit compilers have used an @symbol to specify an absolute address.

The 16- and 32-bit compilers have used the addr ess attribute to specify an object’s
address.

© 2012 Microchip Technology Inc. DS52053A-page 25

MPLAB® XC8 C Compiler User’s Guide

2.5.2.3 MIGRATION TO THE CCI

Avoid making objects and functions absolute if possible.

In XC8, change absolute object definitions such as the following example:
int scanMbde @ 0x200;

to:

i nt scanMbde __at (0x200);

In XC16/32, change code such as:

int scanMode __attribute__(address(0x200)));

to:

int scanMbde __at (0x200);

2.5.24 CAVEATS

Ifthe __at() and __secti on() specifiers are both applied to an object when using
XC8,the __secti on() specifier is currently ignored.

2.5.3 Far Objects and Functions

The __f ar qualifier may be used to indicate that variables or functions may be located
in ‘far memory’. Exactly what constitutes far memory is dependent on the target device,
but it is typically memory that requires more complex code to access. Expressions
involving far-qualified objects may generate slower and larger code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented, in which case, use of this
qualifier will be ignored. Stack-based (aut o and parameter) variables cannot use the
__far specifier.

25.3.1 EXAMPLE

The following shows a variable and function qualified using __f ar.
__far int serial No;
__far int ext_getCond(int selector);

2.5.3.2 DIFFERENCES

The 8-bit compilers have used the qualifier f ar to indicate this meaning. Functions
could not be qualified as f ar.

The 16-bit compilers have used the f ar attribute with both variables and functions.
The 32-bit compilers have used the f ar attribute with functions, only.

DS52053A-page 26

© 2012 Microchip Technology Inc.

Common C Interface

2.5.3.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the f ar qualifier, as in the following
example:

far char tenplate[20];
to_ far,ie., __far char tenplate[20];

In the 16- and 32-bit compilers, change any occurrence of the f ar attribute, as in the
following

void bar(void) __attribute__ ((far));
int tblldx __attribute__ ((far));

to
void _ far bar(void);
int _ far tblldx;

2.5.34 CAVEATS

None.

254 Near Objects

The __near qualifier may be used to indicate that variables or functions may be

located in ‘near memory’. Exactly what constitutes near memory is dependent on the
target device, but it is typically memory that can be accessed with less complex code.
Expressions involving near-qualified objects may be faster and result in smaller code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented, in which case, use of this
qualifier will be ignored. Stack-based (aut o and parameter) variables cannot use the
__hear specifier.

2541 EXAMPLE

The following shows a variable and function qualified using __near.
__near int serial No;
__near int ext_getCond(int selector);

2.5.4.2 DIFFERENCES

The 8-bit compilers have used the qualifier near to indicate this meaning. Functions
could not be qualified as near .

The 16-bit compilers have used the near attribute with both variables and functions.
The 32-bit compilers have used the near attribute for functions, only.

© 2012 Microchip Technology Inc. DS52053A-page 27

MPLAB® XC8 C Compiler User’s Guide

2543 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the near qualifier, as in the following
example:

near char tenpl ate[20];
to__near,i.e.,, __near char tenplate[20];

In 16- and 32-bit compilers, change any occurrence of the near attribute, as in the fol-
lowing

void bar(void) __attribute__ ((near));
int tblldx __attribute__ ((near));

to
void _ _near bar(void);
int __near tblldx;

2544 CAVEATS

None.

255 Persistent Objects

The __persi st ent qualifier may be used to indicate that variables should not be
cleared by the runtime startup code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

2551 EXAMPLE

The following shows a variable qualified using __per si st ent .
__persistent int serial No;

2552 DIFFERENCES

The 8-bit compilers have used the qualifier, per si st ent , to indicate this meaning.

The 16- and 32-bit compilers have used the per si st ent attribute with variables to
indicate they were not to be cleared.

2553 MIGRATION TO THE CCI

With 8-bit compilers, change any occurrence of the per si st ent qualifier, as in the fol-
lowing example:

persi stent char tenplate[20];
to__persistent,ie., _ persistent char tenplate[20];

For the 16- and 32-bit compilers, change any occurrence of the per si st ent attribute,
as in the following

int thlldx __attribute__ ((persistent));
to
int _ persistent tblldx;

2554 CAVEATS

None.

DS52053A-page 28

© 2012 Microchip Technology Inc.

Common C Interface

2.5.6 X and Y Data Objects

The __xdat a and __ydat a qualifiers may be used to indicate that variables may be
located in special memory regions. Exactly what constitutes X and Y memory is depen-
dent on the target device, but it is typically memory that can be accessed independently
on separate buses. Such memory is often required for some DSP instructions.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have such memory implemented; in which case, use of these
qualifiers will be ignored.

25.6.1 EXAMPLE

The following shows a variable qualified using __xdat a, as well as another variable
qualified with __ydat a.

__xdata char data[16];

__ydata char coeffs[4];

2.5.6.2 DIFFERENCES

The 16-bit compilers have used the xmenory and ynmenor y space attribute with
variables.

Equivalent specifiers have never been defined for any other compiler.

2.5.6.3 MIGRATION TO THE CCI

For 16-bit compilers, change any occurrence of the space attributes xnenory or
ymenory, as in the following example:

char __attribute__ ((space(xmenory)))tenpl ate[20];

to__xdata,or __ydata,i.e.,_ _xdata char tenpl ate[20];

25.6.4 CAVEATS

None.

2.5.7 Banked Data Objects

The __bank(num qualifier may be used to indicate that variables may be located in
a particular data memory bank. The number, num represents the bank number. Exactly
what constitutes banked memory is dependent on the target device, but it is typically a
subdivision of data memory to allow for assembly instructions with a limited address
width field.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have banked data memory implemented, in which case, use of
this qualifier will be ignored. The number of data banks implemented will vary from one
device to another.

2571 EXAMPLE

The following shows a variable qualified using __bank() .

__bank(0) char start;
__bank(5) char stop;

© 2012 Microchip Technology Inc. DS52053A-page 29

MPLAB® XC8 C Compiler User’s Guide

2.5.7.2 DIFFERENCES

The 8-bit compilers have used the four qualifiers bank0, bank1, bank2 and bank3 to
indicate the same, albeit more limited, memory placement.

Equivalent specifiers have never been defined for any other compiler.

2.5.7.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the bankx qualifiers, as in the following
example:

bank2 int |ogEntry;
to__bank(),i.e.,__bank(2) int |ogEntry;

2574 CAVEATS

None.

2.5.8 Alignment of Objects

The __al i gn(alignment) specifier may be used to indicate that variables must be
aligned on a memory address that is a multiple of the alignment specified. The align-
ment term must be a power of two. Positive values request that the object’s start
address be aligned; negative values imply the object’'s end address be aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

25.8.1 EXAMPLE

The following shows variables qualified using __al i gn() to ensure they end on an
address that is a multiple of 8, and start on an address that is a multiple of 2,
respectively.

__align(-8) int spacer;
_align(2) char coeffs[6];

2.5.8.2 DIFFERENCES

An alignment feature has never been implemented on 8-bit compilers.
The 16- and 32-bit compilers used the al i gned attribute with variables.
2.5.8.3 MIGRATION TO THE CCI

For 16- and 32-bit compilers, change any occurrence of the al i gned attribute, as in
the following example:

char __attribute__((aligned(4)))node;
to__align,ie.,_ _align(4) char node;
2.5.84 CAVEATS

This feature is not yet implemented on XC8.

DS52053A-page 30 © 2012 Microchip Technology Inc.

Common C Interface

259 EEPROM Objects
The __eepr omqualifier may be used to indicate that variables should be positioned in
EEPROM.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not implement EEPROM. Use of this qualifier for such devices will
generate a warning. Stack-based (aut o and parameter) variables cannot use the
__eepr omspecifier.

2591 EXAMPLE

The following shows a variable qualified using __eepr om
__eepromint serial Nos[4];

2.5.9.2 DIFFERENCES

The 8-bit compilers have used the qualifier, eepr om to indicate this meaning for some
devices.

The 16-bit compilers have used the space attribute to allocate variables to the memory
space used for EEPROM.

2.5.9.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the eepr omqualifier, as in the following
example:

eepromchar title[20];

to__eepromi.e., __eepromchar title[20];

For 16-bit compilers, change any occurrence of the eedat a space attribute, as in the
following

int minSw __attribute__ ((space(eedata)));
to
int __eeprom nmai nSw;

2594 CAVEATS

XC8 does not implement the __eepr omqualifiers for any PIC18 devices; this qualifier
will work as expected for other 8-bit devices.

2.5.10 Interrupt Functions

The __interrupt (type) specifier may be used to indicate that a function is to act
as an interrupt service routine. The t ype is a comma-separated list of keywords that
indicate information about the interrupt function.

The current interrupt types are:
<empty>
Implement the default interrupt function
low_priority

The interrupt function corresponds to the low priority interrupt source (XC8 — PIC18
only)

high_priority
The interrupt function corresponds to the high priority interrupt source (XC8)

© 2012 Microchip Technology Inc. DS52053A-page 31

MPLAB® XC8 C Compiler User’s Guide

save(symbol-list)

Save on entry and restore on exit the listed symbols (XC16)

irg(irqid)

Specify the interrupt vector associated with this interrupt (XC16)
altirg(altirqid)

Specify the alternate interrupt vector associated with this interrupt (XC16)
preprologue(asm)

Specify assembly code to be executed before any compiler-generated interrupt code
(XC16)

shadow

Allow the ISR to utilise the shadow registers for context switching (XC16)

auto_psv
The ISR will set the PSVPAG register and restore it on exit (XC16)

no_auto_psv
The ISR will not set the PSVPAG register (XC16)

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

Some devices may not implement interrupts. Use of this qualifier for such devices will
generate a warning. If the argument to the __i nt er r upt specifier does not make
sense for the target device, a warning or error will be issued by the compiler.

2.5.10.1 EXAMPLE

The following shows a function qualified using __i nt er rupt .

_interrupt(low priority) void getData(void) {
if (TMROIE & TMROIF) {
TMROI F=0;
++ti ck_count;

}

2.5.10.2 DIFFERENCES

The 8-bit compilers have used the i nt errupt and | ow_pri ori ty qualifiers to indi-
cate this meaning for some devices. Interrupt routines were by default high priority.

The 16- and 32-bit compilers have used the i nt er r upt attribute to define interrupt
functions.

2.5.10.3 MIGRATION TO THE CCI
For 8-bit compilers, change any occurrence of the i nt er r upt qualifier, as in the
following examples:

void interrupt mnylsr(void)
void interrupt low priority myLol sr(void)

to the following, respectively

void __interrupt(high_priority) mylsr(void)
void __interrupt(low_ priority) myLolsr(void)

For 16-bit compilers, change any occurrence of the i nt er r upt attribute, as in the fol-
lowing example:

void __attribute__((interrupt,auto_psv, (irq(52)))) nylsr(void);

DS52053A-page 32

© 2012 Microchip Technology Inc.

Common C Interface

to
void __interrupt(auto_psv, (irq(52)))) mylsr(void);

For 32-bit compilers, the __i nt errupt () keyword takes two parameters, the vector
number and the (optional) IPL value. Change code which uses the i nt er r upt attri-
bute, similar to these examples:

void __attribute__ ((vector(0), interrupt(lPL7AUTO), nom psl6))
nyi srO_7A(void) {}

void __attribute__((vector(1l), interrupt(lPL6SRS), noni psl6))
nyi sr1_6SRS(void) {}

/* Determine |IPL and context-saving node at runtine */
void __attribute_ ((vector(2), interrupt(), nom psl6))
nyi sr2_RUNTI ME(voi d) {}

to
void __interrupt(0, | PL7AUTO) nyisr0_7A(void) {}

void __interrupt(1,1PL6SRS) nyisrl 6SRS(void) {}

/* Determine |IPL and context-saving node at runtine */
void __interrupt(2) nyisr2_RUNTI ME(void) {}

2.5.10.4 CAVEATS

None.

2.5.11 Packing Objects

The __pack specifier may be used to indicate that structures should not use memory
gaps to align structure members, or that individual structure members should not be
aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

Some compilers may not pad structures with alignment gaps for some devices and use
of this specifier for such devices will be ignored.

2.5.11.1 EXAMPLE

The following shows a structure qualified using __pack as well as a structure where
one member has been explicitly packed.

__pack struct DATAPO NT {
unsi gned char type;
int val ue;

} x-point;

struct LINETYPE {
unsi gned char type;
__pack int start;
|l ong total;

} line;

2.5.11.2 DIFFERENCES

The __pack specifier is a new CCI specifier available with XC8. This specifier has no
apparent effect since the device memory is byte addressable for all data objects.

The 16- and 32-bit compilers have used the packed attribute to indicate that a struc-
ture member was not aligned with a memory gap.

© 2012 Microchip Technology Inc. DS52053A-page 33

MPLAB® XC8 C Compiler User’s Guide

2.5.11.3 MIGRATION TO THE CCI

No migration is required for XC8.

For 16- and 32-bit compilers, change any occurrence of the packed attribute, as in the
following example:

struct DOT
{
char a;
int x[2] __attribute__ ((packed));
}s
to:
struct DOT
{
char a;
__pack int x[2];
}

Alternatively, you may pack the entire structure, if required.

2.5.11.4 CAVEATS

None.

2.5.12 Indicating Antiquated Objects

The __depr ecat e specifier may be used to indicate that an object has limited longev-
ity and should not be used in new designs. It is commonly used by the compiler vendor
to indicate that compiler extensions or features may become obsolete, or that better
features have been developed and which should be used in preference.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.12.1 EXAMPLE

The following shows a function which uses the __depr ecat e keyword.
voi d __deprecate getVal ue(int node)

{
...

}
2.5.12.2 DIFFERENCES

No deprecate feature was implemented on 8-bit compilers.
The 16- and 32-bit compilers have used the depr ecat ed attribute (note different spell-
ing) to indicate that objects should be avoided if possible.

2.5.12.3 MIGRATION TO THE CCI

For 16- and 32-bit compilers, change any occurrence of the depr ecat ed attribute, as
in the following example:

int __attribute__(deprecated) intMask;
to:
int _ deprecate intMask;

2.5.12.4 CAVEATS

None.

DS52053A-page 34

© 2012 Microchip Technology Inc.

Common C Interface

2.5.13 Assigning Objects to Sections

The __section() specifier may be used to indicate that an object should be located
in the named section (or psect, using the XC8 terminology). This is typically used when
the object has special and unique linking requirements which cannot be addressed by
existing compiler features.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.13.1 EXAMPLE

The following shows a variable which uses the __sect i on keyword.
int _ section("conBSec") commonFl ag;

2.5.13.2 DIFFERENCES

The 8-bit compilers have used the #pr agna psect directive to redirect objects to a
new section, or psect. The operation of the __secti on() specifier is different to this
pragma in several ways, described below.

Unlike with the pragma, the new psect created with __sect i on() does not inherit the
flags of the psect in which the object would normally have been allocated. This means
that the new psect can be linked in any memory area, including any data bank. The
compiler will also make no assumptions about the location of the object in the new sec-
tion. Objects redirected to new psects using the pragma must always be linked in the
same memory area, albeit at any address in that area.

The __sect i on() specifier allows objects that are initialized to be placed in a different
psect. Initialization of the object will still be performed even in the new psect. This will
require the automatic allocation of an additional psect (whose name will be the same
as the new psect prefixed with the letter i), which will contain the initial values. The
pragma cannot be used with objects that are initialized.

Objects allocated a different psect with __sect i on() will be cleared by the runtime
startup code, unlike objects which use the pragma.

You must reserve memory, and locate via a linker option, for any new psect created with
a__section() specifier in the current XC8 compiler implementation.

The 16- and 32-bit compilers have used the sect i on attribute to indicate a different
destination section name. The __secti on() specifier works in a similar way to the
attribute.

2.5.13.3 MIGRATION TO THE CCI

For XC8, change any occurrence of the #pr agma psect directive, such as

#pragma psect text %Wu=nyText
int getMde(int target) {
...

}

tothe __section() specifier, as in

int __section ("nmyText") getMde(int target) {
/...

}

For 16- and 32-bit compilers, change any occurrence of the sect i on attribute, as in
the following example:

int __attribute__ ((section("nyVars"))) intMask;
to:
int __section("nyVars") intMask;

© 2012 Microchip Technology Inc. DS52053A-page 35

MPLAB® XC8 C Compiler User’s Guide

2.5.13.4 CAVEATS

With XC8, the __sect i on() specifier cannot be used with any interrupt function.

2.5.14 Specifying Configuration Bits

The #pr agna confi g directive may be used to program the configuration bits for a
device. The pragma has the form:
#pragma config setting = state|val ue

where set t i ng is a configuration setting descriptor (e.g., WDT), st at e is a descriptive
value (e.g., ON) and val ue is a numerical value.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this directive.

2.5.14.1 EXAMPLE

The following shows configuration bits being specified using this pragma.
#pragma config WDOT=ON, WDTPS = Ox1A

2.5.14.2 DIFFERENCES

The 8-bit compilers have used the __ CONFI G() macro for some targets that did not
already have support for the #pr agma confi g.

The 16-bit compilers have used a humber of macros to specify the configuration set-
tings.
The 32-bit compilers supported the use of #pr agna confi g.

2.5.14.3 MIGRATION TO THE CCI

For the 8-bit compilers, change any occurrence of the __ CONFI () macro, such as
__CONFI G{WDTEN & XT & DPROT)

to the #pragma confi g directive, as in

#pragma config WDTE=ON, FOSC=XT, CPD=ON

No migration is required if the #pr agma conf i g was already used.

For the 16-bit compilers, change any occurrence of the _FOSC() or _FBORPOR()
macros attribute, as in the following example:

_FOSC(CSW FSCM ON & EC PLL16);

to:

#pragma config FCKSMEM = CSW ON_FSCM O\, FPR = ECI O _PLL16
No migration is required for 32-bit code.

2.5.14.4 CAVEATS

None.

2.5.15 Manifest Macros

The CCI defines the general form for macros that manifest the compiler and target
device characteristics. These macros can be used to conditionally compile alternate
source code based on the compiler or the target device.

The macros and macro families are details in Table 2-1.

TABLE 2-1: MANIFEST MACROS DEFINED BY THE CCI

Name Meaning if defined Example

XC Compiled with an MPLAB XC compiler XC__

DS52053A-page 36

© 2012 Microchip Technology Inc.

Common C Interface

TABLE 2-1: MANIFEST MACROS DEFINED BY THE CCI

Name Meaning if defined Example
__CCl__ Compiler is CCI compliant and CCI enforce- __ca
ment is enabled
_ XCH#__ The specific XC compiler used (## can be 8, __XC8__
16 or 32)
__DEVI CEFAM LY__ | The family of the selected target device __dsPI C30F__
__DEVI CENAME__ The selected target device name __18F452__

2.5.15.1 EXAMPLE

The following shows code which is conditionally compiled dependent on the device
having EEPROM memory.

#ifdef __ XCl6__

void __interrupt(__auto_psv__) nylsr(void)
#el se
void __interrupt(low priority) nylsr(void)
#endi f

2.5.15.2 DIFFERENCES

Some of these CCI macros are new (for example __ CCl __), and others have different
names to previous symbols with identical meaning (for example __18F452 is now
__18F452_).

2.5.15.3 MIGRATION TO THE CCI

Any code which uses compiler-defined macros will need review. Old macros will con-
tinue to work as expected, but they are not compliant with the CCI.

2.5.15.4 CAVEATS

None.

© 2012 Microchip Technology Inc. DS52053A-page 37

MPLAB® XC8 C Compiler User’s Guide

2.5.16 In-line Assembly

The asm() statement may be used to insert assembly code in-line with C code. The
argument is a C string literal which represents a single assembly instruction. Obviously,
the instructions contained in the argument are device specific.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this statement.

2.5.16.1 EXAMPLE

The following shows a MOVLWinstruction being inserted in-line.
asm(" MOVLW _f oobar");

2.5.16.2 DIFFERENCES

The 8-bit compilers have used either the asm() or #asm... #endasmeconstructs to
insert in-line assembly code.

This is the same syntax used by the 16- and 32-bit compilers.

2.5.16.3 MIGRATION TO THE CCI
For 8-bit compilers change any instance of #asm... #endasmso that each instruction
in this #asmblock is placed in its own asn{) statement, for example:

#asm
MOVLW 20
MOV i
CLRF li+1
#endasm

to

asm(" MOVLW20") ;
asm("MOWE _i");
asm(" CLRFI | +1");

No migration is required for the 16- or 32-bit compilers.

2.5.16.4 CAVEATS

None.

DS52053A-page 38

© 2012 Microchip Technology Inc.

Common C Interface

26 COMPILER FEATURES

The following items detail compiler options and features that are not directly associated
with source code that

2.6.1 Enabling the CCI

It is assumed you are using the MPLAB X IDE to build projects that use the CCI. The
widget in the MPLAB X IDE Project Properties to enable CCI conformance is Use CCI
Syntax in the Compiler category. A widget with the same name is available in MPLAB
IDE v8 under the Compiler tab.

If you are not using this IDE, then the command-line options are - - CCl for XC8 or
-ncei for XC16/32.

2.6.1.1 DIFFERENCES
This option has never been implemented previously.
2.6.1.2 MIGRATION TO THE CCI

Enable the option.

2.6.1.3 CAVEATS

None.

© 2012 Microchip Technology Inc. DS52053A-page 39

MPLAB® XC8 C Compiler User’s Guide

NOTES:

DS52053A-page 40 © 2012 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP USER'’S GUIDE

Chapter 3. How To's

3.1 INTRODUCTION

This section contains help and references for situations that are frequently encountered
when building projects for Microchip 8-bit devices. Click the links at the beginning of
each section to assist finding the topic relevant to your question. Some topics are
indexed in multiple sections.

Start here:

« Installing and Activating the Compiler

* Invoking the Compiler

» Writing Source Code

» Getting My Application to Do What | Want
» Understanding the Compilation Process
 Fixing Code That Does Not Work

3.2 INSTALLING AND ACTIVATING THE COMPILER

This section details questions that might arise when installing or activating the compiler.

« How Do I Install and Activate My Compiler?
* How Can | Tell if the Compiler has Activated Successfully?
* Can | Install More Than One Version of the Same Compiler?

3.2.1 How Do | Install and Activate My Compiler?

Installation and activation of the license are performed simultaneously by the XC com-
piler installer. The guide Installing and Licensing MPLAB XC C Compilers (DS52059)
is available on www.microchip.com. It provides details on single-user and network
licenses, as well as how to activate a compiler for evaluation purposes.

3.2.2 How Can | Tell if the Compiler has Activated Successfully?

If you think the compiler may not have installed correctly or is not working, it is best to
verify its operation outside of MPLAB IDE to isolate possible problems. Try running the
compiler from the command line to check for correct operation. You do not actually
have to compile code.

From your terminal or DOS-prompt, run the compiler driver xc8 (see Section 4.2
“Invoking the Compiler”) with the option - - VER. This option instructs the compiler to
print version information and exit. So, under Windows, for example, type the following
line, replacing the path information with a path that is relevant to your installation.

"C:\ Program Fil es\ M crochi p\ xc8\ v1. 00\ bi n\ xc8" --ver

The compiler should run, print an informative banner and quit. That banner indicates

the operating mode. Confirm that the operating mode is the one you requested. Note:
if it is not activated properly, the compiler will continue to operate, but only in the Free
mode. If an error is displayed, or the compiler indicates Free mode, then activation was
not successful.

© 2012 Microchip Technology Inc. DS52053B-page 41

MPLAB® XC8 C Compiler User’s Guide

3.2.3 Can | Install More Than One Version of the Same Compiler?

Yes, the compilers and installation process has been designed to allow you to have
more than one version of the same compiler installed, and you can easily swap
between version by changing options in MPLAB IDE, see Section 3.3.4 “How Can |
Select Which Compiler | Want to Build With?”.

Compilers should be installed into a directory whose name is related to the compiler
version. This is reflected in the default directory specified by the installer. For example,
the 1.00 and 1.10 XC8 compilers would typically be placed in separate directories.

C:\ Program Fil es\ M crochi p\ xc8\v1. 00\
C:\ Program Fil es\ M crochi p\ xc8\v1. 10\

DS52053B-page 42 © 2012 Microchip Technology Inc.

How To’s

3.3

INVOKING THE COMPILER

This section discusses how the compiler is run, both on the command-line and from the
MPLAB IDE. It includes information about how to get the compiler to do what you want
in terms of options and the build process itself.

* How Do | Compile from Within MPLAB X IDE?

* How Do | Compile on the Command-line?

* How Do | Compile Using a Make Utility?

* How Can | Select Which Compiler | Want to Build With?

« How Can | Change the Compiler's Operating Mode?

« What Do | Need to Do When Compiling to Use a Debugger?

e How Do | Build Libraries?

* How Do | Use Library Files In My Project?

* How Do | Know What Compiler Options Are Available and What They Do?
* How Do | Know What the Build Options in MPLAB IDE do?

« What is Different About an MPLAB IDE Debug Build?

* How Do | Stop the Compiler Using Certain Memory Locations?
* What Optimizations Are Employed By The Compiler?

3.3.1 How Do | Compile from Within MPLAB X IDE?

See the documentation that comes with MPLAB X IDE for information on how to set up
a project.

If you have one or more XC8 compilers installed, you select the compiler you wish to
use in the Configuration category in the Project Properties dialog. The options for that
compiler are then shown in the XC8 Compiler and XC8 Linker categories. Note that
each of these compiler categories have several Option categories.

3.3.2 How Do | Compile on the Command-line?

The compiler driver is called xc8 for all 8-bit PIC devices; e.g., in Windows, it is named
xc8. exe. This application should be invoked for all aspects of compilation. It is located
in the bin directory of the compiler distribution. Avoid running the individual compiler
applications (such as the assembler or linker) explicitly. You can compile and link in the
one command, even if your project is spread among multiple source files.

The driver is introduced in Section 4.2 “Invoking the Compiler”. See 3.3.4 How Can
| Select Which Compiler | Want to Build With? to ensure you are running the correct
driver if you have more than one installed. The command-line options to the driver are
detailed in Section 4.7 “XC8 Driver Options”. The files that can be passed to the
driver are listed and described in Section 4.2.3 “Input File Types”.

3.3.3 How Do | Compile Using a Make Utility?

When compiling using a make utility (such as make), the compilation is usually per-
formed as a two-step process: first generating the intermediate files, then the final com-
pilation and link step to produce one binary output. This is described in Section 4.3.3
“Multi-Step Compilation”.

The XC8 compiler uses a unigue technology called OCG which uses a different inter-
mediate file format to traditional compilers (including XC16 and XC32)The intermediate
file format used by XC8 is a p-code file (. p1 extension), not an object file. Generating
object files as an intermediate file for multi-step compilation will defeat many of the
advantages of this technology.

© 2012 Microchip Technology Inc. DS52053B-page 43

MPLAB® XC8 C Compiler User’s Guide

3.34 How Can | Select Which Compiler | Want to Build With?

The compilation and installation process has been designed to allow you to have more
than one compiler installed at the same time. You can create a project in MPLAB X IDE
and then build this project with different compilers by simply changing a setting in the
project properties.

To select which compiler is actually used when building a project under MPLAB X IDE,
go to the Project properties dialog. Select the Configuration category in the Project
Properties dialog (Conf: [defaul t]). A list of XC8 compilers is shown in the Com-
piler Toolchain, on the far right. Select the XC8 compiler you require.

Once selected, the controls for that compiler are then shown by selecting the XC8
global options, XC8 Compiler and XC8 Linker categories. These reveal a pane of
options on the right. Note that each category has several panes which can be selected
from a pull-down menu that is near the top of the pane.

3.35 How Can | Change the Compiler's Operating Mode?

The compiler’s operating mode (Free, Standard or PRO, see Section 1.2 “Compiler
Description and Documentation”) can be specified as a command line option when
building on the command line, see Section 4.8.37 “--MODE: Choose Compiler Oper-
ating Mode”. If you are building under MPLAB X IDE, there is a Project Properties
selector in the XC8 compiler category, under the Optimizations option selector, see
Section 4.10.2 “Compiler Category”.

You can only select modes that your license entitles you to use. The Free mode is
always available; Standard or PRO can be selected if you have purchased a license for
those modes.

3.3.6 How Do | Build Libraries?

Note that XC8 uses a different code generation framework (OCG) which uses addi-
tional library files to those used by traditional compilers (including XC16 and XC32).
See Section 4.3.1“The Compiler Applications” for general information on the library
types available and how they fit into the compilation process.

When you have functions and data that are commonly used in applications, you can
either make all the C source and header files available so other developers can copy
these into their projects. Alternatively you can bundle these source files up into a library
which, along with the accompanying header files, can be linked into a project.

Libraries are more convenient because there are fewer files to deal with. Compiling
code from a library is also be fractionally faster. However, libraries do need to be main-
tained. XC8 must use LPP libraries for library routines written in C; the old-style LIB
libraries are used for library routines written in assembly source. It is recommended
that even these libraries be rebuilt if your project is moving to a new compiler version.

Using the compiler driver, libraries can be built by listing all the files that are to be
included into the library on the command line. None of these files should contain a
mai n() function, nor settings for configuration bits or any other such data. Use the

- - QUTPUT=I pp option, see Section 4.8.44 “--OUTPUT=type: Specify Output File
Type” to indicate that a library file is required. For example:

XC8 --chi p=16f877a --output=lpp lcd.c utils.c io.c

creates a library file called | cd. | pp. You can specify another name using the - O
option, see Section 4.8.10 “-O: Specify Output File” or just rename the file.

DS52053B-page 44

© 2012 Microchip Technology Inc.

How To’s

3.3.7 How Do | Know What Compiler Options Are Available and What
They Do?

A list of all compiler options can be obtained by using the - - HELP option on the com-
mand line, see Section 4.8.33 “--HELP: Display Help”. If you give the --HELP option
an argument, being an option name, it will give specific information on that option.

Alternatively, all options are all listed in Section 4.8 “Option Descriptions” in this
user’s guide. If you are compiling in MPLAB X IDE, see Section 4.10 “MPLAB X Uni-
versal Toolsuite Equivalents”, orin MPLAB IDE version 8, see Section 4.9“MPLAB
IDE V8 Universal Toolsuite Equivalents”.

3.3.8 How Do | Know What the Build Options in MPLAB IDE do?

The widgets and controls in the MPLAB IDE Build options in most instances map
directly to one command-line driver option or suboption. The section in the user’s guide
that lists all command-line driver options (Section 4.8 “Option Descriptions”) has
cross references, where appropriate, to the corresponding section which relates to
accessing that option from the IDE. There are two separate sections for MPLAB X IDE
(Section 4.10 “MPLAB X Universal Toolsuite Equivalents”) and MPLAB IDE ver-
sion 8 (Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents”).

3.3.9 What is Different About an MPLAB IDE Debug Build?

The Debug/Release pull-down widget in the MPLAB IDE version 8 toolbar indicates
whether the build should be a debug or release build. In MPLAB X, there are separate
build buttons and menu items to build a project and debug a project.

There are many differences in terms of the IDE, but for the XC8 compiler, there is very
little that is different between the two. The main difference is the setting of a preproces-
sor macro called __ DEBUGto be 1 when a debug is selected. This macro is not defined
if it is not a debug build.

You may make code in your source conditional on this macro using #i f def directives,
etc (see Section 5.14.2 “Preprocessor Directives”) so that you can have your pro-
gram behave differently when you are still in a development cycle. Some compiler
errors are easier to track down after performing a debug build.

In MPLAB X IDE, memory will be reserved for your debugger (if selected) only when
you perform a debug build. In MPLAB v8, memory is always reserved if you select a
debugger hardware tool in your project, see Section 3.5.3 “What Do | Need to Do
When Compiling to Use a Debugger?”.

© 2012 Microchip Technology Inc. DS52053B-page 45

MPLAB® XC8 C Compiler User’s Guide

3.4 WRITING SOURCE CODE

This section presents issues pertaining to the source code you write. It has been
subdivided into sections listed below.

« C Language Specifics

» Device-Specific Features

* Memory Allocation

» Variables

* Functions

* Interrupts

* Assembly Code

34.1 C Language Specifics

This section discusses source code issues that are directly relates to the C language
itself but which are commonly asked.

* When Should | Cast Expressions?

< Can Implicit Type Conversions Change the Expected Results of My Expressions?
* How Do | Enter Non-english Characters Into My Program?

* How Can | Use a Variable Defined in Another Source File?

3.41.1 WHEN SHOULD | CAST EXPRESSIONS?

Expressions can be explicitly case using the cast operator -- a type in round brackets,
e.g., (i nt).Inall cases, conversion of one type to another must be done with caution
and only when absolutely necessary.

Consider the example:

unsigned long |;
unsigned int i;

i =1;

Here, a | ong type is being assigned to a i nt type, and the assignment will truncate
the value in | . The compiler will automatically perform a type conversion from the type
of the expression on the right of the assignment operator (I ong) to the type of the
Ivalue on the left of the operator (i nt).This is called an implicit type conversion. The
compiler will typically produce a warning concerning the potential loss of data by the
truncation.

A cast to type i nt is not required and should not be used in the above example if a

| ongtoi nt conversion was intended. The compiler knows the types of both operands
and will perform the conversion accordingly. If you did use a cast, there is the potential
for mistakes if the code is later changed. For example, if you had:

i = (int)l;

the code will work the in the same way; but, if in future, the type of i is changed to a

| ong, for example, then you must remember to adjust the cast, or remove it, otherwise
the contents of | will continue to be truncated by the assignment, which may not be

correct. Most importantly, the warning issued by the compiler will not be produced if the
cast is in place.

DS52053B-page 46 © 2012 Microchip Technology Inc.

How To’s

Only use a cast in situations where the types used by the compiler are not the types
that you require. For example consider the result of a division assigned to a floating
point variable:

int i, j;

float fl;

fl =ilj;
In this case integer division is performed, then the rounded integer result is converted
toafl oat format. Soifi contained 7 and j contained 2, the division will yield 3 and
this will be implicitly converted to a f | oat type (3.0) and then assigned to f | . If you
wanted the division to be performed in a f | oat format, then a cast is necessary:

fl = (float)ilj;

(Casting either i orj will force the compiler to encode a floating-point division). The
result assigned to f | now be 3.5.

An explicit cast may suppress warnings that might otherwise have been produced. This
can also be the source of many problems. The more warnings the compiler produces,
the better chance you have of finding potential bugs in your code.

3.4.1.2 CAN IMPLICIT TYPE CONVERSIONS CHANGE THE EXPECTED
RESULTS OF MY EXPRESSIONS?

Yes! The compiler will always use integral promotion and there is no way to disable this,
see Section 5.6.1 “Integral Promotion”. In addition, the types of operands to binary
operators are usually changed so that they have a common type as specified by the C
Standard. Changing the type of an operand can change the value of the final expres-
sion so it is very important that you understand the type C Standard conversion rules
that apply when dealing with binary operators. You can manually change the type of an
operand by casting, see Section 3.4.1.1 “When Should | Cast Expressions?”.

3.413 HOW DO I ENTER NON-ENGLISH CHARACTERS INTO MY PROGRAM?

The ANSI standard and MPLAB XC8 do not support extended characters set in char-
acter and string literals in the source character set. See Section 5.4.6 “Constant
Types and Formats” to see how these characters can be entered using escape
sequences.

3.4.1.4 HOW CAN I USE A VARIABLE DEFINED IN ANOTHER SOURCE FILE?

Provided the variable defined in the other source file is not st at i ¢ (see

Section 5.5.2.1.1 “ Static Variables”) or aut o (see Section 5.5.2.2 “Auto Variable
Allocation and access”), then adding a declaration for that variable in the current file
will allow you to access it. A declaration consists of the keyword ext er n in addition to
the type and name of the variable as specified in its definition, e.g.

extern int systenftatus;
This is part of the C language and your favorite C text will give you more information.

The position of the declaration in the current file determines the scope of the variable,
i.e., if you place the declaration inside a function, it will limit the scope of the variable to
that function; placed outside of a function allows access to the variable in all functions
for the remainder of the current file.

Often, declarations are placed in header files and these are then #i ncl uded into the
C source code, see Section 5.14.2 “Preprocessor Directives”.

© 2012 Microchip Technology Inc. DS52053B-page 47

MPLAB® XC8 C Compiler User’s Guide

3.4.2 Device-Specific Features

This section discusses the code that needs to be written to set up or control a feature
that is specific to Microchip PIC devices.

* How Do | Set the Configuration Bits?

e How Do | Use the PIC’s ID Locations?

¢ How Do | Determine the Cause of Reset on Mid-range Parts?
¢ How Do | Access SFRs?

« How Do | Stop the Compiler Using Certain Memory Locations?
« What Do | Need to Do When Compiling to Use a Debugger?

3421 HOW DO | SET THE CONFIGURATION BITS?

These should be set in your code using either a macro or pragma. Earlier versions of
MPLAB IDE allowed you to set these bits in a dialog, but MPLAB X IDE requires that
they be specified in your source code. See Section 5.3.5“Configuration Bit Access”
for how these are set.

3.422 HOW DO | USE THE PIC’S ID LOCATIONS?

There is a supplied macro or pragma that allows these values to be programmed, see
Section 5.3.7 “ID Locations”.

3.4.23 HOW DO | DETERMINE THE CAUSE OF RESET ON MID-RANGE
PARTS?

The TO and PD bits in the STATUS register allow you to determine the cause of a
Reset. However, these bits are quickly overwritten by the runtime startup code that is
executed before mai n is executed, see Section 5.10.1 “Runtime Startup Code”. You
can have the STATUS register saved into a location that is later accessible from C code
so that the cause of Reset can be determined by the application once it is running
again. See Section 5.10.1.4 “STATUS Register Preservation”.

3.4.24 HOW DO | ACCESS SFRS?

The compiler ships with header files, see Section 5.3.3 “Device Header Files”, that
define variables which are mapped over the top of memory-mapped SFRs. Since these
are C variables, they can be used like any other C variable and no new syntax is
required to access these registers.

Bits within SFRs can also be accessed. Individual bit-wide variables are defined which
are mapped over the bits in the SFR. Bit-fields are also available in structures which
map over the SFR as a whole. You can use either in your code. See Section 5.3.6
“Using SFRs From C Code”.

The name assigned to the variable is usually the same as the name specified in the
device data sheet. See Section 3.4.2.5 “How Do | Find The Names Used to Repre-
sent SFRs and Bits?” if these names are not recognized.

DS52053B-page 48 © 2012 Microchip Technology Inc.

How To’s

3.425 HOW DO | FIND THE NAMES USED TO REPRESENT SFRS AND BITS?

Special function registers and the bits within those are accessed via special variables
that map over the register, Section 3.4.2.4 “How Do | Access SFRs?”; however, the
names of these variables sometimes differ from those indicated in the data sheet for
the device you are using.

You can work your way through the <xc. h> header file to find the device-specific
header file which allows access to these special variables, but an easier way is to look
in any of the preprocessed files left behind after a previous compilation. These file have
a . pr e extension and there will be one file with the same base name as each source
file in your project. Look in the preprocessed file for any source file that include <xc. h>
as this will include the definition for all the SFR variables and bits within those.

If you are compiling under MPLAB X IDE, the preprocessed file(s) are left under the
bui | d/ def aul t/ product i on directory of your project for regular builds, or under
bui | d/ def aul t/ debug for debug builds. The are typically left in the source file direc-
tory if you are compiling on the command line.

3.4.3 Memory Allocation

Here are questions relating to how your source code affects memory allocation.

* How Do | Position Variables at an Address | Nominate?

* How Do I Position Functions at an Address | Nominate?

* How Do | Place Variables in Program Memory?

* How Do | Stop the Compiler Using Certain Memory Locations?
* Why are some objects positioned into memory that | reserved?

3.43.1 HOW DO | POSITION VARIABLES AT AN ADDRESS | NOMINATE?

The easiest way to do this is to make the variable absolute, by using the @ addr ess
construct, see Section 5.5.4 “Absolute Variables”. This means that the address you
specify is used in preference to the variable’s symbol in generated code. Since you
nominate the address, you have full control over where objects are positioned, but you
must also ensure that absolute variables do not overlap. Variables placed in the middle
of banks can cause havoc with the allocation of other variables and lead to "Can't find
space" errors, see Section 3.7.6 “How Do | Fix a "Can't find space..." Error?”. See
also Section 5.5.2.4 “Changing the Default Auto Variable Allocation” for informa-
tion on moving auto variables, Section 5.5.2.1.3 “Changing the Default Non-Auto
Variable Allocation” for moving non-auto variables and Section 5.5.3.2 “Changing
the Default Allocation” for moving program-space variables.

3.43.2 HOW DO | POSITION FUNCTIONS AT AN ADDRESS | NOMINATE?

The easiest way to do this is to make the functions absolute, by using the @ addr ess
construct, see Section 5.8.4 “Changing the Default Function Allocation”. This
means that the address you specify is used in preference to the variable’s symbol in
generated code. Since you nominate the address, you have full control over where
functions are positioned, but must also ensure that absolute functions do not overlap.
Functions placed in the middle of pages can cause havoc with the allocation of other
functions and lead to "Can't find space” errors, see Section 3.7.6 “How Do | Fix a
"Can'’t find space..." Error?”.

© 2012 Microchip Technology Inc. DS52053B-page 49

MPLAB® XC8 C Compiler User’s Guide

3.43.3 HOW DO | PLACE VARIABLES IN PROGRAM MEMORY?

The const qualifier implies that the qualified variable is read only. As a consequence
of this, any variables (except for auto variables or function parameters) qualified const
are placed in program memory, thus freeing valuable data RAM, see Section 5.5.3
“Variables in Program Space”. Variables qualified const can also be made absolute,
so that they can be positioned at an address you nominate, see Section 5.5.4.2
“Absolute Objects in Program Memory”.

3.434 HOW DO | STOP THE COMPILER USING CERTAIN MEMORY
LOCATIONS?

Memory can be reserved when you build. The - - RAMand - - ROMoptions allow you to
adjust the ranges of data and program memory, respectively, when you build. See
Section 4.8.48 “--RAM: Adjust RAM Ranges” and Section 4.8.49 “--ROM: Adjust
ROM Ranges”. By default, all the available on-chip memory is available for use, but
these options allow you to reserve parts of this memory.

3.4.4 Variables

This examines questions that relate to the definition and usage of variables and types
within a program.

* Why Are My Floating-point Results Not Quite What | Am Expecting?

* How Can | Access Individual Bits of a Variable?

* How Long Can | Make My Variable and Macro Names?

* How Do | Share Data Between Interrupt and Main-line Code?

* How Do | Position Variables at an Address | Nominate?

* How Do | Place Variables in Program Memory?

* How Do | Place Variables in The PIC18'’s External Program Memory?

¢ How Can | Rotate a Variable?

* How Do | Utilize All the RAM Banks on My Device?

* How Do | Utilize the Linear Memory on Enhanced Mid-range PIC Devices?
e How Do | Find Out Where Variables and Functions Have Been Positioned?

3.44.1 WHY ARE MY FLOATING-POINT RESULTS NOT QUITE WHAT | AM
EXPECTING?

First, make sure that if you are watching floating-point variables in MPLAB IDE that the
type and size of these match how they are defined. For 24-bit floating point variables
(whether they have type f | oat or doubl e) ensure that the Format in the variable
properties is set to IEEE float MPLAB IDE v8. In MPLAB X IDE set the Display Column
Value As popup menu to IEEE float (24 bit). If the variable is a 32-bit floating point
object, set the types to IEEE Float in both IDEs.

The size of the floating point type can be adjusted for both f | oat and doubl e types,
see Section 4.8.31 “--FLOAT: Select Kind of Float Types” and Section 4.8.24
“--DOUBLE: Select Kind of Double Types”.

Since floating-point variables only have a finite number of bits to represent the values
they are assigned, they will hold an approximation of their assigned value, see
Section 5.4.3 “Floating-Point Data Types”. A floating-point variable can only hold
one of a set of discrete real number values. If you attempt to assign a value that is not
in this set, it is rounded to the nearest value. The more bits used by the mantissa in the
floating-point variable, the more values can be exactly represented in the set and the
average error due to the rounding is reduced.

Whenever floating-point arithmetic is performed, rounding also occurs. This can also
lead to results that do not appear to be correct.

DS52053B-page 50

© 2012 Microchip Technology Inc.

How To’s

3.44.2 HOW CAN | ACCESS INDIVIDUAL BITS OF A VARIABLE?

There are several ways of doing this. The simplest and most portable way is to define
an integer variable and use macros to read, set or clear the bits within the variable
using a mask value and logical operations, such as the following.

#define testbit(var, bit) ((var) & (1 <<(bit)))

#define setbit(var, bit) ((var) |= (1 << (bit)))

#define clrbit(var, bit) ((var) & ~(1 << (bit)))

These, respectively, test to see if bit number, bi t , in the integer, var, is set; set the
corresponding bi t in var ; and clear the corresponding bi t in var. Alternatively, a
union of an integer variable and a structure with bit-fields (see Section 5.4.4.2
“Bit-Fields in Structures”) can be defined, e.g.

uni on both {

unsi gned char byte;

struct {

unsigned b0:1, bil:1, b2:1, b3:1, b4:1, b5:1, b6:1, b7:1;

} bitv;
} var;
This allows you to access byt e as a whole (using var.byte), or any bit within that vari-
able independently (using var . bi t v. b0 through var . bi t v. b7).

Note that the compiler does support bit variables (see Section 5.4.2.1 “Bit Data Types
and Variables”) as well as bit-fields in structures.

3.443 HOW LONG CAN | MAKE MY VARIABLE AND MACRO NAMES?

The C Standard indicates that a only a number initial characters in an identifier are sig-
nificant, but it does not actually state what this number is and it varies from compiler to
compiler. For XC8, the first 255 characters are significant, but this can be reduced
using the - N option, see Section 4.8.9 “-N: Identifier Length”. The few character
there are in your variable names, the more portable your code. Using the - N option
allows the compiler to check that your identifiers conform to a specific length. This
option affects variable and function names, as well as preprocessor macro names.

If two identifiers only differ in the nonsignificant part of the name, they are considered
to represent the same object, which will almost certainly lead to code failure.

© 2012 Microchip Technology Inc. DS52053B-page 51

MPLAB® XC8 C Compiler User’s Guide

3.4.5 Functions

This section examines questions that relate to functions.

* What is the Optimum Size For Functions?

« How Can | Tell How Big a Function Is?

« How Do | Know What Resources Are Being Used by Each Function?

* How Do | Find Out Where Variables and Functions Have Been Positioned?
« How Do | Use Interrupts in C?

« How Do | Stop An Unused Function Being Removed?

* How Do | Make a Function Inline?

3.45.1 WHAT IS THE OPTIMUM SIZE FOR FUNCTIONS?

Generally speaking, the source code for functions should be kept small as this aids in
readability and debugging. It is much easier to describe and debug the operation of a
function which performs a small number of tasks and they typically have less side
effects, which can be the source of coding errors. In the embedded programming world,
a large number of small functions, and the calls necessary to execute them may result
in excessive memory and stack usage, so a compromise is often necessary.

The PIC10/12/16 devices use pages in the program memory which is where the func-
tion code is stored and executed. Although the compiler will allow, and can encode,
functions whose size (the size of the assembly code they generate) exceeds that of a
program memory page, functions of such a size should be avoided and split into
smaller routines where possible. The assembly call and jump sequences to locations
in other pages are much longer than those made to destinations in the same page. If a
function is so large as to cross a page boundary, then loops, or other code constructs
that require jumps within that function, may use the longer form of jump on each itera-
tion, see Section 5.8.3 “Allocation of Executable Code”.

PI1C18 devices are less affected by internal memory paging and the instruction set
allows for calls and jumps to any destination with no penalty, but you should still
endeavor to keep functions as small as possible.

With all devices, the smaller the function, the easier it is for the linker to allocate them
to memory without errors.

3.452 HOW DO | STOP AN UNUSED FUNCTION BEING REMOVED?

If a C function’s symbol is referenced in hand-written assembly code, the function will
never be removed, even if it is not called or never had its address taken in C code.

Create an assembly source file and add this file to your project. You only have to refer-
ence the symbol in this file, so the file can contain the following

GLOBAL _nyFunc

where myFunc is the C name of the function in question (note the leading underscore
in the assembly name, see Section 5.12.3.1 “Equivalent Assembly Symbols™). This
is sufficient to prevent the function removal optimization from being performed.

3.453 HOW DO | MAKE A FUNCTION INLINE?

You can ask the compiler to inline a function by using the i nl i ne specifier. This is only
a suggestion to the compiler and may not always be obeyed. Do not confuse this spec-
ifier with the i nl i ne pragma (Section 5.14.4.4 “The #pragma Intrinsic Directive”)
which is for functions that have no corresponding source code and which will be spe-
cifically expanded by the code generator during compilation.

DS52053B-page 52

© 2012 Microchip Technology Inc.

How To’s

3.4.6 Interrupts

Interrupt and interrupt service routine questions are discussed in this section.

* How Do | Use Interrupts in C?
¢ How Can | Make My Interrupt Routine Faster?
* How Do | Share Data Between Interrupt and Main-line Code?

3.46.1 HOW DO | USE INTERRUPTS IN C?

First, be aware of what interrupt hardware is available on your target device. Baseline
PIC devices do not implement interrupts at all; mid-range devices utilize a single inter-
rupt vector, and PIC18 devices implement two separate interrupt vector locations and
use a simple priority scheme.

In C source code, a function can be written to act as the interrupt service routine by
using the i nt er r upt qualifier, see Section 5.9.1 “Writing an Interrupt Service Rou-
tine”. Such functions save/restore program context before/after executing the function
body code and a different return instruction is used, see Section 5.9.3 “Context
Switching”. There must be no more than one interrupt function for each interrupt vec-
tor implemented on the target device.

Aside fromthei nt er r upt qualifier, the function prototype must specify no parameters
and a voi d return type. If you wish to implement the low priority interrupt function on
PIC18 devices, use the | ow_pri ori ty keyword as well as the interrupt qualifier.

Code inside the interrupt function can do anything you like, but see Section 3.6.6
“How Can | Make My Interrupt Routine Faster?” for suggestions to enhance
real-time performance.

Prior to any interrupt occurring, your program must ensure that peripherals are cor-
rectly configured and that interrupts are enabled, see Section 5.9.4 “Enabling Inter-
rupts”. On PIC18 devices, you must specify the priority of interrupt sources by writing
the appropriate SFRs.

3.4.7 Assembly Code

This section examines questions that arise when writing assembly code as part of a C
project.

¢ How Should I Combine Assembly and C Code?

« What do | need Other than Instructions in an Assembly Source File?
* What do | need Other than Instructions in an Assembly Source File?
¢ How Can | Access SFRs From Within Assembly Code?

* What Things Must | Manage When Writing Assembly Code?

3471 HOW SHOULD | COMBINE ASSEMBLY AND C CODE?

Ideally, any hand-written assembly should be written as separate routines that can be
called. This offers some degree of protection from interaction between compiler-gener-
ated and hand-written assembly code. Such code can be placed into a separate
assembly module that can be added to your project, see Section 5.12.1 “Integrating
Assembly Language Modules”.

If necessary, assembly code can be added in-line with C code using either of two meth-
ods, see Section 5.12.2 “#asm, #endasm and asm()”. The code added in-line should
ideally be limited to instructions such as NOP, SLEEP or CLRWDT. Macros are already
provided which in-line all these instructions, see Appendix A. “Library Functions”.
More complex in-line assembly that changes register contents and the device state can
cause code failure if precautions are not taken and should be used with caution. See
Section 5.7 “Register Usage” for those registers used by the compiler.

© 2012 Microchip Technology Inc. DS52053B-page 53

MPLAB® XC8 C Compiler User’s Guide

3.47.2 WHAT DO | NEED OTHER THAN INSTRUCTIONS IN AN ASSEMBLY
SOURCE FILE?

Assembly code typically needs assembler directives as well as the instructions them-
selves. The operation of all the directives are described in the subsections of
Section 6.4.9 “Assembler Directives”. Common directives required are mentioned
below.

All assembly code must be placed in a psect so it can be manipulated as a whole by
the linker and placed in memory. See Section 5.15.1 “Program Sections” for general
information on psects; see Section 6.4.9.3 “PSECT” for information on the directive
used to create and specify psects.

The other commonly used directive is GLOBAL, defined in Section 6.4.9.1 “GLOBAL”
which is used to make symbols accessible across multiple source files.

3.4.73 HOWDO I ACCESS C OBJECTS FROM ASSEMBLY CODE?

Most C objects are accessible from assembly code. There is a mapping between the
symbols used in the C source and those used in the assembly code generated from
this source. Your assembly should access the assembly-equivalent symbols which are
detailed in Section 5.12.3 “Interaction Between Assembly and C Code”.

Instruct the assembler that the symbol is defined elsewhere by using the GLOBAL
assembler directive, see Section 6.4.9.1 “GLOBAL". This is the assembly equivalent
of a C declaration, although no type information is present. This directive is not needed
and should not be used if the symbol is defined in the same module as your assembly
code.

Any C variable accessed from assembly code will be treated as if it were qualified vol -
atil e, see Section 5.4.7.2 “Volatile Type Qualifier”. Specifically specifying the
vol at i | e qualifier in C code is preferred as it makes it clear that external code may
access the object.

3.47.4 HOW CAN | ACCESS SFRS FROM WITHIN ASSEMBLY CODE?

The safest way to gain access to SFRs in assembly code is to have symbols defined
in your assembly code that equate to the corresponding SFR address. Header files are
provided with the compiler so that you do not need to define these yourselves, and they
are detailed in Section 5.12.3.2 “Accessing Registers from Assembly Code”.

There is no guarantee that you will be able to access symbols generated by the com-
pilation of C code, even code that accesses the SFR you require.

3.47.5 WHAT THINGS MUST | MANAGE WHEN WRITING ASSEMBLY CODE?

If you are hand-writing assembly code there are several things that you must take con-
trol of.

* Whenever accessing a RAM variable, you must ensure that the bank of the vari-
able is selected before you read or write the location. This is done by one or more
assembly instructions. The exact code is based on the device you are using and
the location of the variable. Bank selection is not be required if the object is in
common memory, (which is called the access bank on PIC18 devices) or if you
are using an instruction that takes a full address (such as the MOVFF instruction on
PI1C18 devices). Check your device data sheet to see the memory architecture of
your device, and the instructions and registers which control bank selection. Fail-
ure to select the correct bank will lead to code failure.

The BANKSEL pseudo instruction can be used to simplify this process, see
Section 6.4.1.2 “Bank and Page Selection”.

DS52053B-page 54 © 2012 Microchip Technology Inc.

How To’s

* You must ensure that the address of the RAM variable you are accessing has
been masked so that only the bank offset is being used as the instruction’s file
register operand. This should not be done if you are using an instruction that takes
a full address (such as the MOVFF instruction on PIC18 devices). Check your
device data sheet to see what address operand instructions requires. Failure to
mask an address may lead to a fixup error (see Section 3.7.8 “How Do | Fix a
Fixup Overflow Error?”) or code failure.

The BANKMASK macro can truncate the address for you, see Section 5.12.3.2
“Accessing Registers from Assembly Code”.

« Before you call or jump to any routine, you must ensure that you have selected
the program memory page of this routine using the appropriate instructions. You
can either use the PAGESEL pseudo instruction, see Section 6.4.1.2 “Bank and
Page Selection”, or the FCALL or LJMP pseudo instructions (not required on
PIC18 devices), see Section 6.4.1.4 “Long Jumps and Calls” which will auto-
matically add page selection instructions, if required.

* You must ensure that any RAM used for storage has memory reserved. If you are
only accessing variables defined in C code, then reservation is already done by
the compiler. You must reserve memory for any variables you only use in the
assembly code using an appropriate directive such as DS or DABS, see
Section 6.4.9.10 “DS” or Section 6.4.9.11 “DABS". It is often easier to define
objects in C code rather than in assembly.

¢ You must place any assembly code you write in a psect (see Section 6.4.9.3
“PSECT” for the directive to do this and Section 5.15.1 “Program Sections” for
general information about psects). A psect you define may need flags (options) to
be specified. Pay particular note to the del t a, space and cl ass flags (see
Section 6.4.9.3.4 “Delta”, Section 6.4.9.3.13 “Space” and Section 6.4.9.3.3
“Class”). If these are not set correctly, compile errors or code failure will almost
certainly result. If the psect specifies a class and you are happy with it being
placed anywhere in the memory range defined by that class (see Section 7.2.1
“-Aclass =low-high,...”), it does not need any additional options to be linked; oth-
erwise, you will need to link the psect using a linker option (see Section 7.2.19
“-Pspec” for the usual way to link psects and Section 4.8.7 “-L-: Adjust Linker
Options Directly” which indicates how you can specify this option without run-
ning the linker directly).
Assembly code that is placed in-line with C code will be placed in the same psect
as the compiler-generated assembly and you should not place this into a separate
psect.

* You must ensure that any registers you write to in assembly code are not already
in used by compiler-generated code. If you write assembly in a separate module,
then this is less of an issue as the compiler will, by default, assume that all regis-
ters are used by these routines (see Section 5.7 “Register Usage”, registers).
No assumptions are made for in-line assembly (see Section 5.12.2 “#asm,
#endasm and asm()”) and you must be careful to save and restore any
resources that you use (write) and which are already in use by the surrounding
compiler-generated code.

© 2012 Microchip Technology Inc. DS52053B-page 55

MPLAB® XC8 C Compiler User’s Guide

3.5 GETTING MY APPLICATION TO DO WHAT | WANT

This section provides programming techniques, applications and examples. It also
examines questions that relate to making an application perform a specific task.

« What Can Cause Glitches on Output Ports?

« How Do I Link Bootloaders and Downloadable Applications?
« What Do | Need to Do When Compiling to Use a Debugger?
« How Can | Have Code Executed Straight After Reset?

¢ How Do | Share Data Between Interrupt and Main-line Code?
* How Can | Prevent Misuse of My Code?

* How Do | Use Printf to Send Text to a Peripheral?

« How Do | Calibrate the Oscillator on My Device?

* How Do | Place Variables in The PIC18’s External Program Memory?
¢ How Can | Implement a Delay in My Code?

¢ How Can | Rotate a Variable?

351 What Can Cause Glitches on Output Ports?

In most cases, this is caused by using ordinary variables to access port bits or the entire
port itself. These variables should be qualified vol ati | e.

The value stored in a variable mapped over a port (hence the actual value written to
the port) directly translates to an electrical signal. It is vital that the values held by these
variables only change when the code intends them to, and that they change from their
current state to their new value in a single transition. See Section 5.4.7.2 “Volatile
Type Qualifier”. The compiler attempts to write to volatile variables in one operation.

3.5.2 How Do I Link Bootloaders and Downloadable Applications?

Exactly how this is done depends on the device you are using and your project require-
ments, but the general approach when compiling applications that use a bootloader is
to allocate discrete program memory space to the bootloader and application so they
have their own dedicated memory. In this way the operation of one cannot affect the
other. This will require that either the bootloader or the application is offset in memory.
That s, the Reset and interrupt location are offset from address 0 and all program code
is offset by the same amount.

On PIC18 devices, typically the application code is offset, and the bootloader is linked
with no offset so that it populates the Reset and interrupt code locations. The boot-
loader Reset and interrupt code merely contains code which redirects control to the real
Reset and interrupt code defined by the application and which is offset.

On mid-range devices, this is not normally possible to perform when interrupts are
being used. Consider offsetting all of the bootloader with the exception of the code
associated with Reset, which must always be defined by the bootloader. The applica-
tion code can define the code linked at the interrupt location. The bootloader will need
to remap any application code that attempts to overwrite the Reset code defined by the
bootloader.

The option - - CODEOFFSET, see Section 4.8.22 “--CODEOFFSET: Offset Program
Code to Address”, allows the program code (Reset and vectors included) to be
moved by a specified amount. The option also restricts the program from using any pro-
gram memory from address 0 (Reset vector) to the offset address. Always check the
map file, see Section 7.4.2 “Contents”, to ensure that nothing remains in reserved
areas.

DS52053B-page 56 © 2012 Microchip Technology Inc.

How To’s

The contents of the HEX file for the bootloader can be merged with the code of the
application by adding the HEX file as a project file, either on the command line, or in
MPLAB IDE. This results in a single HEX file that contains the bootloader and applica-
tion code in the one image. HEX files are merged by the HEXMATE application, see
Section 8.6 “HEXMATE" . Check for warnings from this application about overlap,
which may indicate that memory is in use by both bootloader and the downloadable
application.

3.5.3 What Do | Need to Do When Compiling to Use a Debugger?

You can use debuggers, such as ICD3 or REALICE, to debug code built with the XC8
compiler. These debuggers use some of the data and program memory of the device
for its own use, so it is important that your code does not also use these resources.

There is a command-line option, see Section 4.8.23 “--DEBUGGER: Select Debug-
ger Type”, that can be used to tell the compiler which debugger is to be used. The com-
piler can then reserve the memory used by the debugger so that your code will not be
located in these locations.

In the MPLAB X IDE, the appropriate debugger option is specified if you perform a
debug build. It will not be specified if you perform a regular Build Project or Clean and
Build.

In MPLAB IDE v8, it is recommended that you select Auto from the Debugger in the
Linker tab of the Build Options dialog. This way, the debugger indicated to the compiler
will be the same as that selected for the project. This option always has an effect.
Select no debugger for a release build.

Since some device memory is being used up by the debugger, there is less available
for your program and it is possible that your code or data may no longer fit in the device
when a debugger is selected.

Note that which specific memory locations used by the debuggers is an attribute of
MPLAB IDE, not the device. If you move a project to a new version of the IDE, the
resources required may change. For this reason, you should not manually reserve
memory for the debugger, or make any assumptions in your code as to what memory
is used. A summary of the debugger requirements is available in the MPLAB IDE help
files.

To verify that the resources reserved by the compiler match those required by the
debugger, do the following. Compile your code with and without the debugger selected
and keep a copy of the map file produced for both builds. Compare the linker options
in the map files and look for changes in the - A options, see Section 7.2.1 “-Aclass
=low-high,...” . For example, the memory defined for the CODE class with no debugger
might be specified by this option:

- ACODE=00h- OFFh, 0100h- 07FFh, 0800h- OFFFhx3

and with the ICD3 selected as the debugger, it becomes:

- ACODE=00h- OFFh, 0100h- 07FFh, 0800h- OFFFhx2, 01800h- 01EFFh

This shows that a memory range from 1F00 to 1FFF has been removed by the compiler
and cannot be used by your program. See also Section 3.6.16 “Why are some
objects positioned into memory that | reserved?”.

3.54 How Can | Have Code Executed Straight After Reset?

A special hook has been provided so you can easily add special "powerup" assembly
code which will be linked to the Reset vector, see Section 5.10.2 “The Powerup Rou-
tine”. This code will be executed before the runtime startup code is executed, which in
turn is executed before the mai n function, see Section 5.10 “Main, Runtime Startup
and Reset”.

© 2012 Microchip Technology Inc. DS52053B-page 57

MPLAB® XC8 C Compiler User’s Guide

355 How Do | Share Data Between Interrupt and Main-line Code?

Variables accessed from both interrupt and main-line code can easily become cor-
rupted or mis-read by the program. The vol at i | e qualifier (see Section 5.4.7.2 “Vol-
atile Type Qualifier”) tells the compiler to avoid performing optimizations on such
variables. This will fix some of the issues associated with this problem.

The other issues relates to whether the compiler/device can access the data atomically.
With 8-bit PIC devices, this is rarely the case. An atomic access is one where the entire
variable is accessed in only one instruction. Such access is uninterruptable. You can
determine if a variable is being accessed atomically by looking at the assembly code
the compiler produces in the assembly list file, see Section 6.6 “Assembly List
Files”. If the variable is accessed in one instruction, it is atomic. Since the way vari-
ables are accessed can vary from statement to statement it is usually best to avoid
these issues entirely by disabling interrupts prior to the variable being accessed in
main-line code, then re-enable the interrupts afterwards, see Section 5.9.4 “Enabling
Interrupts”.

3.5.6 How Can | Prevent Misuse of My Code?

First, many devices with flash program memory allow all or part of this memory to be
write protected. The device configuration bits need to be set correctly for this to take
place, see Section 5.3.5 “Configuration Bit Access” and your device data sheet.

Second, you can prevent third-party code being programmed at unused locations in the
program memory by filling these locations with a value rather than leaving them in their
default unprogrammed state. You can chose a fill value that corresponds to an instruc-
tion or set all the bits so as the values cannot be further modified. (Consider what will

happen if you program somehow reaches and starts executing from these filled values.

What instruction will be executed?)

The compiler's HEXMATE utility (see Section 8.6 “HEXMATE”) has the capability to
fill unused locations and this operation can be requested using a command-line driver
option, see Section 4.8.30 “--FILL: Fill Unused Program Memory”. As HEXMATE

only works with HEX files, this feature is only available when producing HEX/COF file
outputs (as opposed to binary, for example), which is the default operation.

And last, if you wish to make your library files or intermediate p-code files available to
others but do not want the original source code to be viewable, then you can obfuscate
the files using the - - SHROUD option, see Section 4.8.54 “--SHROUD: Obfuscate
P-code Files”

3.5.7 How Do | Use Printf to Send Text to a Peripheral?

The print f function does two things: it formats text based on the format string and
placeholders you specify, and sends (prints) this formatted text to a destination (or
stream), see Appendix A. “Library Functions”. The pri nt f function performs all the
formatting; then it calls a helper function, called put ch, to send each byte of the for-
matted text. By customizing the put ch function you can have pri nt f send datato any
peripheral or location, see Section 5.11.1 “ The printf Routine”. You may choose the
pri ntf output goto an LCD, SPI module or USART, for example.

DS52053B-page 58 © 2012 Microchip Technology Inc.

How To’s

A stub for the put ch function can be found in the compiler’s sour ces directory. Copy
it into your project then modify it to send the single byte parameter passed to it to the
required destination. Before you can use pri nt f , peripherals that you use will need to
be initialized in the usual way. Here is an example of putch for a USART on a mid-range
device.

voi d putch(char data) {
while(! TXIF) [/ check buffer
conti nue; /1 wait till ready
TXREG = dat a; /1 send data

}

You can get pri nt f to send to one of several destinations by using a global variable
to indicate your choice. Have the put ch function send the byte to one of several des-
tinations based on the contents of this variable.

3.5.8 How Do | Calibrate the Oscillator on My Device?

Some devices allow for calibration of their internal oscillators, see your device data
sheet. The runtime startup code generated by the compiler, see Section 5.10.1 “Run-
time Startup Code”, will by default provide code that performs oscillator calibration.
This can be disabled, if required, using an option, see Section 4.8.50 “--RUNTIME:
Specify Runtime Environment”.

3.5.9 How Do | Place Variables in The PIC18’s External Program
Memory?

If all you mean to do is place read-only variables in program memory, qualify them as
const, see Section 5.5.3 “Variables in Program Space”. If you intend the variables
to be located in the external program memory then use the f ar qualifier and specify
the memory using the - - RAMoption, see Section 4.8.48 “--RAM: Adjust RAM
Ranges”. The compiler will allow f ar -qualified variables to be modified. Note that the
time to access these variables will be longer than for variables in the internal data mem-
ory. The access mode to external memory can be specified with an option, see
Section 4.8.26 “--EMI: Select External Memory Interface Operating Mode”.

3.5.10 How Can | Implement a Delay in My Code?

If an accurate delay is required, or if there are other tasks that can be performed during
the delay, then using a timer to generate an interrupt is the best way to proceed.

If these are not issues in your code, then you can use the compiler’s in-built delay
pseudo-functions: _del ay, _del ay_ns or__del ay_us, see Appendix A. “Library
Functions”. These all expand into in-line assembly instructions or a (nested) loop of
instructions which will consume the specified number of cycles or time. The delay argu-
ment must be a constant and less than approximately 179,200 for PIC18 devices and
approximately 50,659,000 for other devices.

Note that these code sequences will only use the NOP instruction and/or instructions
which form a loop. The alternate PIC18-only versions of these pseudo-functions, e.g.,
_del aywdt , may use the CLRVDT instruction as well. See also Appendix A. “Library
Functions”.

3.5.11 How Can | Rotate a Variable?

The C language does not have a rotate operator, but rotations can be performed using
the shift and bitwise OR operators. Since the PIC devices have a rotate instruction, the
compiler will look for code expressions that implement rotates (using shifts and ORS)
and use the rotate instruction in the generated output wherever possible, see
Section 5.6.2 “Rotation”.

© 2012 Microchip Technology Inc. DS52053B-page 59

MPLAB® XC8 C Compiler User’s Guide

3.6 UNDERSTANDING THE COMPILATION PROCESS

This section tells you how to find out what the compiler did during the build process,
how it encoded output code, where it placed objects, etc. It also discusses the features
that are supported by the compiler.

« What's the Difference Between the Free, Standard and PRO Modes?

* How Can | Make My Code Smaller?

* How Can | Reduce RAM Usage?

* How Can | Make My Code Faster?

* How Does the Compiler Place Everything in Memory?

* How Can | Make My Interrupt Routine Faster?

* How Big Can C Variables Be?

* What Optimizations Will Be Applied to My Code?

* How Do | Utilize All the RAM Banks on My Device?

« How Do | Utilize the Linear Memory on Enhanced Mid-range PIC Devices?
* What Devices are Supported by the Compiler?

* How Do | Know What Code the Compiler Is Producing?

« How Do I Find Out What an Warning/error Message Means?

« How Can | Tell How Big a Function Is?

* How Do | Know What Resources Are Being Used by Each Function?

e How Do | Find Out Where Variables and Functions Have Been Positioned?
* Why are some objects positioned into memory that | reserved?

* How Do | Know How Much Memory Is Still Available?

e How Do I Build Libraries?

« What is Different About an MPLAB IDE Debug Build?

* How Do | Stop An Unused Function Being Removed?

* How Do | Use Library Files In My Project?

* What Optimizations Are Employed By The Compiler?

3.6.1 What's the Difference Between the Free, Standard and PRO
Modes?

These modes (see Section 1.2 “Compiler Description and Documentation”) mainly
differ in the optimizations that are performed when compiling. Compilers operating in

Free (formerly called Lite) and Standard mode can compile for all the same devices as
supported by the Pro mode. The code compiled in Free and Standard mode can use

all the available memory for the selected device. What will be different is the size and
speed of the generated compiler output. Free mode output will be much less efficient
when compared to that produced in Standard mode, which in turn will be less efficient
than that produce when in Pro mode.

All these modes use the OCG compiler framework, so the entire C program is compiled
in one step and the source code does not need many non-standard extensions.

There are a small number of command-line options disabled in Free mode, but these
do not relate to code features; merely how the compiler can be executed. Most custom-
ers never need to use these options. The options are - - GETOPTI ON Section 4.8.32
“--GETOPTION: Get Command-line Options” and - - SETOPTI ON Section 4.8.53
“--SETOPTION: Set the Command-line Options For Application”.

DS52053B-page 60

© 2012 Microchip Technology Inc.

How To’s

3.6.2 How Can | Make My Code Smaller?

There are a number of ways that this can be done, but results vary from one project to
the next. Use the assembly list file, see Section 6.6 “Assembly List Files”, to observe
the assembly code produced by the compiler to verify that the following tips are relevant
to your code.

Use the smallest data types possible as less code is needed to access these. (This also
reduces RAM usage.) Note that a bi t type and non-standard 24-bit integer type
(short | ong) exists for this compiler. See Section 5.4 “ Supported Data Types and
Variables” for all data types and sizes.

There are two sizes of floating-point type, as well, and these are discussed in the same
section. Avoid floating-point if at all possible. Consider writing fixed-point arithmetic
code.

Use unsigned types, if possible, instead of signed types; particularly if they are used in
expressions with a mix of types and sizes. Try to avoid an operator acting on operands
with mixed sizes whenever possible.

Whenever you have a loop or condition code, use a "strong" stop condition, i.e., the fol-
lowing:

for(i=0; i!=10; i++)

is preferable to:

for(i=0; i<10; i++)

A check for equality (== or ! =) is usually more efficient to implement than the weaker
< comparison.

In some situations, using a loop counter that decrements to zero is more efficient than
one that starts at zero and counts up by the same number of iterations. This is more
likely to be the case if the loop index is a byte-wide type. So you might be able to rewrite
the above as:

for(i=10; i!=0; i--)

There might be a small advantage in changing the order of function parameters so that

the first parameter is byte sized. A register is used if the first parameter is byte-sized.
For example consider:

char cal c(char node, int value);
over
char cal c(int value, char node);

Ensure that all optimizations are enabled, see Section 4.8.42 “--OPT: Invoke Com-
piler Optimizations”. Be aware of what optimizations the compiler performs (see
Section 5.13 “Optimizations” and Section 6.5 “Assembly-Level Optimizations”)
S0 you can take advantage of them and don’t waste your time manually performing opti-
mizations in C code that the compiler already handles, e.g., don’t turn a multiply-by-4
operation into a shift-by-2 operation as this sort of optimization is already detected.

© 2012 Microchip Technology Inc. DS52053B-page 61

MPLAB® XC8 C Compiler User’s Guide

3.6.3 How Can | Reduce RAM Usage?

Use the smallest data types possible. (This also reduces code size as less code is
needed to access these.) Note that a bi t type and non-standard 24-bit integer type
(short | ong) exists for this compiler. See Section 5.4 “Supported Data Types and
Variables” for all data types and sizes. There are two sizes of floating-point type, as
well, and these are discussed in the same section.

Consider using aut o variables over global or st at i ¢ variables as there is the poten-
tial that these may share memory allocated to other aut o variables that are not active
at the same time. Memory allocation of auto variables is made on a compiled stack,
described in Section 5.5.2.2 “Auto Variable Allocation and access”.

Rather than pass large objects to, or from, functions, pass pointers which reference
these objects. This is particularly true when larger structures are being passed, but
there might be RAM savings to be made even when passing | ong variables.

Objects that do not need to change throughout the program can be located in program
memory using the const qualifier, see Section 5.4.7.1 “Const Type Qualifier” and
Section 5.5.3 “Variables in Program Space”. This frees up precious RAM, but slows
execution.

Ensure that all optimizations are enabled, see Section 4.8.42 “--OPT: Invoke Com-
piler Optimizations”. Be aware of which optimizations the compiler performs (see
Section 5.13 “Optimizations”) so that you can take advantage of them and don’t
waste your time manually performing optimizations in C code that the compiler already
handles.

3.6.4 How Can | Make My Code Faster?

To a large degree, smaller code is faster code, so efforts to reduce code size often

decrease execution time, see Section 3.6.2 “How Can | Make My Code Smaller?”.
See also, Section 3.6.6 “How Can | Make My Interrupt Routine Faster?”. However,
there are ways some sequences can be sped up at the expense of increased code size.

One of the compiler optimization settings is for speed (the alternate setting is for
space), so ensure this is selected, see Section 4.8.42 “--OPT: Invoke Compiler
Optimizations”. This will use alternate output in some instances that is faster, but
larger.

Generally, the biggest gains to be made in terms of speed of execution come from the
algorithm used in a project. Identify which sections of your program need to be fast.
Look for loops that might be linearly searching arrays and choose an alternate search
method such as a hash table and function. Where results are being recalculated, con-
sider if they can be cached.

3.6.5 How Does the Compiler Place Everything in Memory?

In most situations, assembly instructions and directives associated with both code and
data are grouped into sections, called psects, and these are then positioned into con-
tainers which represent the device memory. An introductory explanation into this pro-
cess is given in Section 5.15.1 “Program Sections”. The exception is for absolute
variables (see Section 5.5.4 “Absolute Variables”), which are placed at a specific
address when they are defined and which are not placed in a psect.

DS52053B-page 62 © 2012 Microchip Technology Inc.

How To’s

3.6.6 How Can | Make My Interrupt Routine Faster?

Consider suggestions made in Section 3.6.2 “How Can | Make My Code Smaller?”
(code size) for any interrupt code. Smaller code is often faster code.

In addition to the code you write in the ISR there is the code the compiler produces to
switch context. This is executed immediately after an interrupt occurs and immediately
before the interrupt returns, so must be included in the time taken to process an inter-
rupt, see Section 5.9.3 “Context Switching”. This code is optimal in that only regis-
ters used in the ISR will be saved by this code. Thus, the less registers used in your
ISR will mean potentially less context switch code to be executed.

Mid-range devices have only a few registers that are used by the compiler, and there
is little context switch code. Even fewer registers are considered for saving when com-
piling for enhanced mid-range device. PIC18 devices will benefit most from the above
suggestion as they use a larger set of registers in generated code, see Section 5.7
“Register Usage”.

Generally simpler code will require less resources than more complicated expressions.
Use the assembly list file to see which registers are being used by the compiler in the
interrupt code, see Section 6.6 “Assembly List Files”.

Consider having the ISR simply set a flag and return. The flag can then be checked in
main-line code to handle the interrupt. This has the advantage of moving the compli-
cated interrupt-processing code out of the ISR so that it no longer contributes to its reg-
ister usage. Always use the vol at i | e qualifier (see Section 5.4.7.2 “Volatile Type
Qualifier” for variables shared by the interrupt and main-line code, see Section 3.5.5
“How Do | Share Data Between Interrupt and Main-line Code?”.

3.6.7 How Big Can C Variables Be?

This question specifically relates to the size of individual C objects, such as arrays or
structures. The total size of all variables is another matter.

To answer this question you need to know in which memory space the variable will be
located. Objects qualified const will be located in program memory; other objects will
be placed in data memory. Program memory object sizes are discussed in

Section 5.5.3.1 “Size Limitations of Const Variables”. Objects in data memory are
broadly grouped into autos and non-autos and the size limitations of these objects,
respectively, are discussed in Section 5.5.2.3 “ Size Limits of Auto Variables” and
Section 5.5.2.1.2 “*Non-Auto Variable Size Limits”.

3.6.8 What Optimizations Will Be Applied to My Code?

The optimizations in OCG compilers can broadly be broadly grouped into C-level and
assembly level optimizations. These are described in Section 5.13 “Optimizations”
and can be controlled by he option detailed in Section 4.8.42 “--OPT: Invoke Com-

piler Optimizations”.

3.6.9 How Do | Utilize All the RAM Banks on My Device?

The compiler will automatically use all the available RAM banks on the device you are
programming. It is only if you wish to alter the default memory allocation that you need
take any action. Special bank qualifiers, see Section
“--RAM=default,+20000-2FFFF.”, and an option (see Section 4.8.16 “--ADDRQUAL:
Set Compiler Response to Memory Qualifiers”) to indicate how these qualifiers are
interpreted are used to manually allocate variables.

Note that there is no guarantee that all the memory on a device can be utilized as data
and code is packed in sections, or psects.

© 2012 Microchip Technology Inc. DS52053B-page 63

MPLAB® XC8 C Compiler User’s Guide

3.6.10 How Do I Utilize the Linear Memory on Enhanced Mid-range PIC
Devices?

The linear addressing mode is a means of accessing the banked data memory as one
contiguous and linear block, see Section 5.5.1 “Address Spaces”. Use of the linear
memory is fully automatic. Objects that are larger than a data bank can be defined in
the usual way and will be accessed using the linear addressing mode, see

Section 5.5.2.3 “Size Limits of Auto Variables” and Section 5.5.2.1.2 “Non-Auto
Variable Size Limits”. If you define absolute objects at a particular location in memory,
you can use a linear address, if you prefer, or the regular banked address, see
Section 5.5.4.1 “Absolute Variables in Data Memory”.

3.6.11 What Devices are Supported by the Compiler?

Support for new devices usually takes place with each compiler release. To find
whether a device is supported by your compiler, you can do several things, see also
Section 5.3.1 “Device Support”.

« HTML listings are provided in the compiler’s docs directory. Open these in your
favorite web browser. They are called pi ¢c_chi pi nfo. ht M and
pi c18 chi pinfo. htm .

* Run the compiler driver on the command line (see Section 4.2 “Invoking the
Compiler™) with the - - CHI PI NFOoption, see Section 4.8.21 “--CHIPINFO: Dis-
play List of Supported Devices”. A full list of all devices is printed to the screen.

3.6.12 How Do | Know What Code the Compiler Is Producing?

The assembly list file (see Section 6.6 “Assembly List Files”) shows the assembly
output for almost the entire program, including library routines linked in to your pro-
gram, as well a large amount of the runtime startup code, see Section 5.10.1 “Run-
time Startup Code”. The list file is produced by default if you are using MPLAB IDE.
If you are using the command-line, the option - - ASMLI ST will produce this file for you,
see Section 4.8.17 “--ASMLIST: Generate Assembler List Files”. The assembly list
file will have a . | st extension.

The list file shows assembly instructions, some assembly directives and information
about the program, such as the call graph, see Section 6.6.6 “ Call Graph”, pointer
reference graph, see Section 6.6.5 “Pointer Reference Graph” and information for
every function. Not all assembly directives are shown in the list file if the assembly opti-
mizers are enabled (they are produced in the intermediate assembly file). Temporarily
disable the assembly optimizers (Section 4.8.42 “--OPT: Invoke Compiler Optimiza-
tions”) if you wish to see all the assembly directives produced by the compiler.

3.6.13 How Can | Tell How Big a Function Is?

This size of a function (the amount of assembly code generated for that function) can
be determined from the assembly list file, see Section 6.6 “Assembly List Files”, or
a funclist’ file generated by the compiler. Recent compilers define a symbol whose
assigned value is equal to the size of the function. The symbol has the form
__size_of _func, where f unc is the name of the function. The units of this symbol
will be the same as the addressability of the program memory for the particular device:
words for PIC10/12/16 and bytes for PIC18. You can also search for the labels that
mark the beginning and end of the function. The function starts at the label _f unc:,
where f unc is the name of the function, and ends just prior to the label

__end_of _func. For example, the function mai n may have associated symbols
__size_of _main, _nmainand__end_of _mai n. These will be found in the symbol
table at the end of the assembly list file.

DS52053B-page 64

© 2012 Microchip Technology Inc.

How To’s

The list of functions, memory location and size is available in a file called f uncl i st .
Each function will have a line similar to the following.

_mai n: CCODE, 2012 0 30

This indicates that generated assembly code associated with the function, mai n, was
placed in the CODE linker class (see Section 6.4.9.3.3 “Class”), was located at
address 2012 (decimal) in address space number O (see Section 6.4.9.3.13 “ Space”),
and was 30 (again decimal) words/bytes long. An introduction to psects is given in
Section 5.15.1 “Program Sections”.

3.6.14 How Do | Know What Resources Are Being Used by Each
Function?

In the assembly list file there is information printed for every C function, including library
functions, see Section 6.6 “Assembly List Files”. This information indicates what
registers the function used, what functions it calls (this is also found in the call graph,
see Section 6.6.6 “Call Graph”), and how many bytes of data memory it requires.
Note that auto, parameter and temporary variables used by a function may overlap with
those from other functions as these are placed in a compiled stack by the compiler, see
Section 5.5.2.2.1 “Compiled Stack Operation”.

3.6.15 How Do | Find Out Where Variables and Functions Have Been
Positioned?

You can determine where variables and functions have been positioned from either the
assembly list file, see Section 6.6 “Assembly List Files”, or the map file, see
Section 7.4 “Map Files”. Only global symbols are shown in the map file; all symbols
(including locals) are listed in the assembly list file, but only for the code represented
by that list file. (Each assembly module has its own list file.)

There is a mapping between C identifiers and the symbols used in assembly code,
which are the symbols shown in both of these files, see Section 5.12.3.1 “Equivalent
Assembly Symbols”. The symbol associated with a variable is assigned the address
of the lowest byte of the variable; for functions it is the address of the first instruction
generated for that function.

3.6.16 Why are some objects positioned into memory that | reserved?

The memory reservation options, see Section 3.4.3.4 “How Do | Stop the Compiler
Using Certain Memory Locations?” will adjust the range of addresses associated
with classes used by the linker. Most variables and function are placed into psects, see
Section 5.15.1 “Program Sections”, that are linked anywhere inside these class
ranges and so are affected by these reservation options.

Some psects are explicitly placed at an address rather than being linked anywhere in
an address range, e.g., the psect that holds the code to be executed at Reset is always
linked to address O because that is where the Reset location is defined to be for 8-bit
devices. Such a psect will not be affected by the - - ROMoption, even if you use it to
reserve memory address 0. Psects that hold code associated with Reset and interrupts
can be shifted using the - - CODEOFFSET option, see Section 4.8.22 “--CODEOFF-
SET: Offset Program Code to Address”.

Check the assembly list file, see Section 6.6 “Assembly List Files”, to determine the
names of psects that hold objects and code. Check the linker options in the map file,
see Section 7.4 “Map Files”, to see if psects have been linked explicitly or if they are
linked anywhere in a class. See also, the linker options - p (Section 7.2.19 “-Pspec”)
and - A (Section 7.2.1 “-Aclass =low-high,..."”).

© 2012 Microchip Technology Inc. DS52053B-page 65

MPLAB® XC8 C Compiler User’s Guide

3.6.17 How Do | Know How Much Memory Is Still Available?

Although the memory summary printed by the compiler after compilation (see
Section 4.8.56 “--SUMMARY: Select Memory Summary Output Type” options) or
the memory gauge available in MPLAB IDE both indicate the amount of memory used
and the amount still available, neither of these features indicate whether this memory
is one contiguous block or broken into many small chunks. Small blocks of free memory
cannot be used for larger objects and so out-of-memory errors may be produced even
though the total amount of memory free is apparently sufficient for the objects to be
positioned. (See Section 3.7.6 “How Do | Fix a "Can’t find space..." Error?”)

The "UNUSED ADDRESS RANGES" section, see Section 7.4.2.5“Unused Address
Ranges” in the map file indicates exactly what memory is still available in each linker
class. It also indicated the largest contiguous block in that class if there are memory
bank or page divisions.

3.6.18 How Do | Use Library Files In My Project?

See Section 3.3.6 “How Do | Build Libraries?” for information on how you build your
own library files. The compiler will automatically include any applicable standard library
into the build process when you compile, so you never need to control these files.

To use one or more library files that were built by yourself or a colleague, include them
in the list of files being compiled on the command line. The library files can be specified
in any position in the file list relative to the source files, but if there is more than one
library file, they will be searched in the order specified in the command line. The LPP
libraries do not need to be specified if you are compiling to an intermediate file, i.e.,
using the - - PASS1 option (see Section 4.8.45 “--PASS1: Compile to P-code”). For
example:

xc8 --chi p=16f1937 main.c int.c lcd. | pp

If you are using MPLAB X IDE to build a project, add the library file(s) to the Libraries
folder that will shown in your project, in the order in which they should be searched. The
IDE will ensure that they are passed to the compiler at the appropriate point in the build
sequence.

3.6.19 What Optimizations Are Employed By The Compiler?

Optimizations are employed at both the C and assembly level of compilation. This is
described in Section 5.13 “Optimizations” and Section 6.5 “Assembly-Level Opti-
mizations”, respectively. The options that control optimization are described in
Section 4.8.42 “--OPT: Invoke Compiler Optimizations”.

3.6.20 Why Do | Get Out-of-memory Errors When | Select a Debugger?

If you use a hardware tool debugger, such as the REAL ICE or ICD3, these require
memory for the on-board debug executive. When you select a debugger using the com-
piler's - - DEBUGGER option (Section 4.8.23 “--DEBUGGER: Select Debugger
Type"), or the IDE equivalent, the memory required for debugging is removed from that
available to your project. See Section 3.5.3 “What Do | Need to Do When Compiling
to Use a Debugger?”

DS52053B-page 66

© 2012 Microchip Technology Inc.

How To’s

3.7

FIXING CODE THAT DOES NOT WORK

This section examines issues relating to projects that do not build due to compiler
errors, or which build but do not work as expected.

* How Do | Find Out What an Warning/error Message Means?

« How Do I Find the Code that Caused Compiler Errors Or Warnings in My Pro-
gram?

* How Can | Stop Spurious Warnings from Being Produced?

* Why Can't | Even Blink an LED?

e How Do | Know If the Stack Has Overflowed?

e How Do | Fix a "Can’t find space..." Error?

« How Do | Fix a "Can’t generate code..." Error?

* How Do | Fix a Fixup Overflow Error?

* Invoking the Compiler

« Invoking the Compiler

¢ What Can Cause Corrupted Variables and Code Failure When Using Interrupts?

» Why are some objects positioned into memory that | reserved?

3.7.1 How Do | Find Out What an Warning/error Message Means?

Each warning or error message has a description, and possibly sample code that might
trigger such an error, listed in the messages chapter, see Appendix B. “Error and
Warning Messages”. The compiler prints with each message a unique ID number in
brackets. Use this number to look up the message in the manual. This number also
allows you to control message behavior using options and pragmas, see Section 4.6.5
“Changing Message Behavior”.

3.7.2 How Do | Find the Code that Caused Compiler Errors Or
Warnings in My Program?

In most instances, where the error is a syntax error relating to the source code, the
message produced by the compiler indicates the offending line of code, see

Section 4.6 “Compiler Messages”. If you are compiling in MPLAB IDE, then you can
double-click the message and have the editor take you to the offending line. But iden-
tifying the offending code is not always so easy.

In some instances, the error is reported on the line of code following the line that needs
attention. This is because a C statement is allowed to extend over multiple lines of the
source file. It is possible that the compiler may not be able to determine that there is an
error until it has started to scan to statement following. So in the following code

input = PORTB // oops - forgot the sem col on
i f(input>6)
11
The missing semicolon on the assignment statement will be flagged on the following
line that contains the i f () statement.

In other cases, the error might come from the assembler, not the code generator. If the
assembly code was derived from a C source file then the compiler will try to indicate
the line in the C source file that corresponds to the assembly that is at fault. If the
source being compiled is an assembly module, the error directly indicates the line of
assembly that triggered the error. In either case, remember that the information in the
error relates to some problem is the assembly code, not the C code.

© 2012 Microchip Technology Inc. DS52053B-page 67

MPLAB® XC8 C Compiler User’s Guide

Finally, there are errors that do not relate to any particular line of code at all. An error
in a compiler option or a linker error are examples of these. If the program defines too
many variables, there is no one particular line of code that is at fault; the program as a
whole uses too much data. Note that the name and line number of the last processed
file and source may be printed in some situations even though that code is not the direct
source of the error.

To determine the application that generated the error or warning, take a note of its
unigue number printed in the message, see Section 4.6.1 “Messaging Overview”,
and check the message section of the manual, see Appendix B. “Error and Warning
Messages”. At the top of each message description, on the right in brackets, is the
name of the application that produced this message. Knowing the application that pro-
duced the error makes it easier to track down the problem. The compiler application
names are indicated in 4.3 “The Compilation Sequence”. If you need to see the
assembly code generated by the compiler, look in the assembly list file, see

Section 6.6 “Assembly List Files”. For information on where the linker attempted to
position objects, see the map file discussed in Section 7.4 “Map Files”.

3.7.3 How Can | Stop Spurious Warnings from Being Produced?

Warnings indicate situations that could possibly lead to code failure. In many situations
the code is valid and the warning is superfluous. Always check your code to confirm
that it is not a possible source of error and in cases where this is so, there are several
ways that warnings can be hidden.

« The warning level threshold can be adjusted so that only warnings of a certain
importance are printed, see Section 4.6.5.1 “Disabling Messages”

¢ All warnings with a specified ID can be inhibited

* In some situations, a pragma can be used to inhibit a warning with a specified ID
for certain lines of source code, see Section 5.14.4.11 “The #pragma warning
Directive”.

3.74 Why Can’t | Even Blink an LED?

Even if you have set up the TRIS register and written a value to the port, there are sev-
eral things that can prevent such a seemingly simple program from working.

« Make sure that the device’s configuration registers are set up correctly, see
Section 5.3.5 “Configuration Bit Access”. Make sure that you explicitly specify
every bit in these registers and don'’t just leave them in their default state. All the
configuration features are described in your device data sheet. If the configuration
bits that specify the oscillator source are wrong, for example, the device clock
may not even be running.

« If the internal oscillator is being used, in addition to configuration bits there may be
SFRs you need to initialize to set the oscillator frequency and modes, see
Section 5.3.6 “Using SFRs From C Code” and your device data sheet.

« Either turn off the watch dog timer in the configuration bits or clear the watch dog
timer in your code (see Section Appendix A. “Library Functions”) so that the
device does not reset. If the device is resetting, it may never reach the lines of
code in your program that blink the LED. Turn off any other features that may
cause device Reset until your test program is working.

« The device pins used by the port bits are often multiplexed with other peripherals.
A pin might be connected to a bit in a port, or it might be an analog input, or it
might the output of a comparator, for example. If the pin connected to your LED is
not internally connected to the port you are using, then your LED will never oper-
ate as expected. The port function tables shown in your device data sheets will
show other uses for each pin that will help you identify peripherals to investigate.

DS52053B-page 68

© 2012 Microchip Technology Inc.

How To’s

« Make sure you do not have a "read-modify-write" problem. If the device you are
using does not have a separate "latch” register (as is the case with mid-range PIC
devices) this problem can occur, particularly if the port outputs are driving large
loads, such as an LED. You may see that setting one bit turns off another or other
unusual events. Create your own latch by using a temporary variable. Rather than
read and write the port directly, make modifications to the latch variable. After
modifications are complete, copy the latch as a whole to the port. This means you
are never reading the port to modify it. Check the device literature for more
detailed information.

3.7.5 How Do | Know If the Stack Has Overflowed?

The 8-bit PIC devices have a limited hardware stack that is only used for function (and
interrupt function) return addresses, see Section 5.3.4 “ Stack”. If the nesting of func-
tion calls and interrupts is too deep, the stack will overflow (wraps around and over-
writes previous entries). Code will then fail at a later point — sometimes much later in
the call sequence — when it accesses the corrupted return address.

The compiler attempts to track stack depth and, when required, swap to a method of
calling that does not need the hardware stack (PIC10/12/16 devices only). You have
some degree of control over what happens when the stack depth has apparently over-
flowed, see Section 4.8.50 “--RUNTIME: Specify Runtime Environment” and the
st ackcal | suboption.

A call graph shows the call hierarchy and depth that the compiler has determined. This
graph is shown in the assembly list file. To understand the information in this graph, see
Section 6.6.6 “Call Graph”.

Since the runtime behavior of the program cannot be determined by the compiler, it can
only assume the worst case and may report that overflow is possible even though it is
not. However, no overflow should go undetected if the program is written entirely in C.
Assembly code that uses the stack is not considered by the compiler and this must be
taken into account.

3.7.6 How Do | Fix a "Can’t find space..." Error?

There are a number of different variants of this message, but all essentially imply a sim-
ilar situation. They all relate to there being no free space large enough to place a block
of data or instructions. Due to memory paging, banking or other fragmentation, this
message can be issued when seemingly there is enough memory remaining. See
Appendix B. “Error and Warning Messages” for more information on your particular
error number.

3.7.7 How Do | Fix a "Can’t generate code..." Error?

This is a catch-all message which is generated if the compiler has exhausted all possi-
ble means of compiling a C expression, see Appendix B. “Error and Warning Mes-
sages”. It does not usually indicate a fault in your code. The inability to compile the
code may be a deficiency in the compiler, or an expression that requires more registers
or resources than are available at that point in the code. This is more likely to occur on
baseline devices. In any case, simplifying the offending expression, or splitting a state-
ment into several smaller statements, usually allows the compilation to continue. You
may need to use another variable to hold the intermediate results of complicated
expressions.

© 2012 Microchip Technology Inc. DS52053B-page 69

MPLAB® XC8 C Compiler User’s Guide

3.7.8 How Do | Fix a Fixup Overflow Error?

Fixup — the process of replacing a symbolic reference with an actual address — can
overflow if the address assigned to the symbol is too large to fit in the address field of
the assembly instruction. Most 8-bit PIC assembly instructions specify a file address
that is an offset into the currently selected memory bank. If a full unmasked address is
specified with these instructions, the linker will be unable to encode the large address
value into the instruction and this error will be generated. For example, a mid-range
device instruction only allows for file addresses in the range of 0 to Ox7F. However, if
such a device has 4 data banks of RAM, the address of variables can range from 0 to
Ox1FF. If the symbol of a variable that will be located at address 1DO0, for example, is
specified with one of these instructions, when the symbol is replaced with its final value,
this value will not fit in the address field of the instruction.

In most cases, these errors are caused by hand-written assembly code. When writing
assembly, it is the programmer’s responsibility to add instructions to select the destina-
tion bank and then mask the address being used in the instruction, see Section 3.4.7.5
“What Things Must | Manage When Writing Assembly Code?”. It is important to
remember that this is an issue with an assembly instruction and you need to find the
instruction at fault before you can proceed. See the relevant error number in Appendix
B. “Error and Warning Messages” for specific details as to how to track down the
offending instruction.

3.7.9 What Can Cause Corrupted Variables and Code Failure When
Using Interrupts?

This is usually caused by having variables used by both interrupt and main-line code.
If the compiler optimizes access to a variable or access is interrupted by an interrupt
routine, then corruption can occur. See Section 3.5.5 “How Do | Share Data Between
Interrupt and Main-line Code?” for more information.

DS52053B-page 70

© 2012 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP USER'’S GUIDE

Chapter 4. XC8 Command-line Driver

4.1 INTRODUCTION

The name of the command-line driver is xc8. XC8 can be invoked to perform all
aspects of compilation, including C code generation, assembly, and link steps. Even if
an IDE is used to assist with compilation, the IDE will ultimately call xc8.

Although the internal compiler applications can be called explicitly from the command
line, the xc8 driver is the recommended way to use the compiler as it hides the com-
plexity of all the internal applications used and provides a consistent interface for all
compilation steps.

This chapter describes the steps the driver takes during compilation, the files that the
driver can accept and produce, as well as the command-line options that control the

compiler’s operation. The relationship between these command-line options and the

controls in the MPLAB IDE Build Options dialog is also described.

The following topics are examined in this chapter of the MPLAB XC8 C Compiler User’s
Guide:

* Invoking the Compiler

* The Compilation Sequence

* Runtime Files

» Compiler Output

e Compiler Messages

e XC8 Driver Options

 MPLAB IDE V8 Universal Toolsuite Equivalents

* MPLAB X Universal Toolsuite Equivalents

© 2012 Microchip Technology Inc. DS52053B-page 71

MPLAB® XC8 C Compiler User’s Guide

4.2 INVOKING THE COMPILER

This section explain how to invoke xc8 on the command line, as well as the files that it
can read.

421 Driver Command-line Format

xc8 has the following basic command format.
xc8 [options] files [libraries]

Throughout this manual, it is assumed that the compiler applications are in the con-
sole’s search path or that the full path is specified when executing an application. The
compiler’s location can be added to the search path when installing the compiler by
selecting the Add to environment checkbox at the appropriate time during the
installation.

Itis customary to declare opt i ons (identified by a leading dash “-” or double dash “-")
before the files’ names. However, this is not mandatory.

The formats of the options are supplied in Section 4.7 “ XC8 Driver Options”, along
with corresponding descriptions of the options.

The fil es may be an assortment of C and assembler source files, and precompiled
intermediate files, such as relocatable object (. obj) files or p-code (. p1) files. While
the order in which the files are listed is not important, it may affect the order in which

code or data appears in memory, and may affect the name of some of the output files.

Li brari es is a list of user-defined object code or p-code library files that will be
searched by the code generator (in the case of p-code libraries) or the linker (for object
code libraries), in addition to the standard C libraries. The order of these files will deter-
mine the order in which they are searched. It is customary to insert the Li br ar i es list
after the list of source file names. However, this is not mandatory.

If you are building code using a make system, familiarity with the unique intermediate
p-code file format as described in Section 4.3.3 “Multi-Step Compilation” is recom-
mended. Object files are seldom used with the MPLAB XC8 C Compiler, unless
assembly source modules are in the project.

4211 LONG COMMAND LINES

The xc8 driver is capable of processing command lines exceeding any operating sys-
tem limitation if the driver is passed options via a command file. The command file is
specified by the @symbol, which should be immediately followed (i.e., no intermediate
space character) by the name of the file containing the command-line arguments that
are intended for the driver.

Each command-line argument must be separated by one or more spaces and may
extended to several lines by using a space and backslash character to separate lines.
The file may contain blank lines, which are simply skipped by the driver.

The use of a command file means that compiler options and source code filenames can
be permanently stored for future reference without the complexity of creating a make
utility.

In the following example, a command file xyz. cnd was constructed in a text editor and
contains both the options and file names that are required to compile a project.

--chi p=16F877A -m\

--opt=all -g\

main.c isr.c

After it is saved, the compiler may be invoked with the following command:

xc8 @yz.cmd

DS52053B-page 72

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.2.2 Environment Variables

When hosted on a Windows environment, the compiler uses the registry to store infor-
mation relating to the compiler installation directory and activation details, along with
other configuration settings. That information is required whether the compiler is run on
the command line or from within an IDE.

Under Linux and Apple OS X environments, the registry is replaced by an XML file
which stores the same information.

On non-Windows hosts, the compiler searches for the XML file in the following ways:

1. The compiler looks for the presence of an environment variable called XC_XM_.
If present, this variable should contain the full path to the XML file (including the
file’s name).

2. Ifthis variable is not defined, the compiler then searches for an environment vari-
able called HOVE. This variable typically contains the path to the user’s home
directory. The compiler looks for the XML with a name . xc. xmi in the directory
indicated by the HOVE variable.

3. Ifthe HOVE environment variable is not defined, the compiler tries to open the file
[etcl/xc.xm .

4. If none of these methods finds the XML file, an error is generated.

When running the compiler on the command line, you may wish to set the PATH envi-
ronment variable. This allows you to run the compiler driver without specifying the full

compiler path with the driver name. Note that the directories specified by the PATH vari-
able are only used to locate the compiler driver. Once the driver is running, it uses the
registry or XML file, described above, to locate the internal compiler applications, such
as the parser, assembler and linker, etc. The directories specified in the PATH variable
do not override the information contained in the registry or XML file. The MPLAB IDE

allows the compiler to be selected via a dialog and execution of the compiler does not
depend on the PATH variable.

4.2.3 Input File Types

xc8 distinguishes source files, intermediate files and library files solely by the file type,
or extension. Recognized file types are listed in Table 4-1. Alphabetic case of the
extension is not important from the compiler’s point of view, but most operating system
shells are case sensitive.

TABLE 4-1: XC8 INPUT FILE TYPES

File Type Meaning
. C C source file
.pl p-code file
.l pp p-code library file
.as or.asm Assembler source file
. obj Relocatable object code file
.lib Relocatable object library file
. hex Intel HEX file

This means, for example, that a C source file must have a . ¢ extension. Assembler
files can use either . as or . asmextensions.

© 2012 Microchip Technology Inc.

DS52053B-page 73

MPLAB® XC8 C Compiler User’s Guide

There are no compiler restrictions imposed on the names of source files, but be aware
of case, name-length and other restrictions imposed by your operating system. If you
are using an IDE, avoid assembly source files whose basename is the same as the
basename of any project in which the file is used. This may result in the source file
being overwritten by a temporary file during the build process.

The terms “source file” and “module” are often used when talking about computer
programs. They are often used interchangeably, but they refer to the source code at
different points in the compilation sequence.

A source file is a file that contains all or part of a program. They may contain C code,
as well as preprocessor directives and commands. Source files are initially passed to
the preprocessor by the driver.

A module is the output of the preprocessor, for a given source file, after inclusion of any
header files (or other source files) which are specified by #i ncl ude preprocessor
directives. All preprocessor directives and commands (with the exception of some com-
mands for debugging) have been removed from these files. These modules are then
passed to the remainder of the compiler applications. Thus, a module may be the amal-
gamation of several source and header files. A module is also often referred to as a
translation unit. These terms can also be applied to assembly files, as they can include
other header and source files.

DS52053B-page 74

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.3 THE COMPILATION SEQUENCE

FIGURE 4-1:

When you compile a project, there are many internal applications that are called to do
the work. This section looks at when these internal applications are executed and how
this relates to the build process of multiple source files. This section should be of
particular interest if you are using a make system to build projects.

4.3.1 The Compiler Applications

The main internal compiler applications and files are illustrated in Figure 4-1.

You can consider the large underlying box to represent the whole compiler, which is
controlled by the command line driver, xc8. You may be satisfied just knowing that C
source files (shown on the far left) are passed to the compiler and the resulting output
files (shown here as a HEX and COFF debug file on the far right) are produced; how-
ever, internally there are many applications and temporary files being produced. An
understanding of the internal operation of the compiler, while not necessary, does
assist with using the tool.

To simplify the compiler design, some of the internal applications come in a PIC18 and
P1C10/12/16 variant. The appropriate application is executed based on the target
device. In fact, the xc8 driver delegates the build commands to one of two com-
mand-line drivers: Pl CC or PI CC18. This operation is transparent and xc8 may be
considered as “the driver” which does all the work.

The driver will call the required compiler applications. These applications are shown as
the smaller boxed inside the large driver box. The temporary file produced by each
application can also be seen in this diagram.

COMPILER APPLICATIONS AND FILES

C source
files

\ \ N\ assembly
p-code p1 jp-code .as | source
libraries files files

processed p-code relocatable
files (module) s assembly file object file

Command-line driver

code
generator

preprocessor parser

debug file
cromwell > .cof
objtohex
hexmate > .hex
hex file

absolute
object file

relgcata}ble .obj 2 .obje.ct hex ey
object files libraries files

© 2012 Microchip Technology Inc. DS52053B-page 75

MPLAB® XC8 C Compiler User’s Guide

Table 4-2 lists the compiler applications. The names shown are the names of the exe-
cutables, which can be found in the bi n directory under the compiler’s installation

directory.
TABLE 4-2: COMPILER APPLICATION NAMES
Name Description

xc8 (calls PI CCor PI CC18) | Command line driver; the interface to the compiler
CLI ST Text file formatter

CPP The C preprocessor

P1 C code parser

CGPI Cor CGPI C18 Code generator (based on the target device)
ASPI Cor ASPI C18 Assembler (based on the target device)

HLI NK Linker

OBJTCHEX Conversion utility to create HEX files
CROWELL Debug file converter

HEXMATE HEX file utility

LI BR Librarian

DUMP Object file viewer

CREF Cross reference utility

For example, C source files (. c files) are first passed to the C preprocessor, CPP. The
output of this application are . pr e files. These files are then passed to the parser appli-
cation, P1, which produces a p-code file output with extension . p1. The applications
are executed in the order specified and temporary files are used to pass the output of
one application to the next.

The compiler can accept more than just C source files. Table 4-1 lists all the possible
input file types, and these files can be seen in this diagram, on the top and bottom,
being passed to different compilation applications. They are processed by these
applications and then the application output joins the normal flow indicated in the
diagram.

For example, assembly source files are passed straight to the assembler applicationl
and are not processed at all by the code generator. The output of the assembler (an
object file with . obj extension) is passed to the linker in the usual way. You can see
that any p-code files (. p1 extension) or p-code libraries (. | pp extension) that are
supplied on the command line are initially passed to the code generator.

Other examples of input files include object files (. obj extension) and object libraries
(. I'i b extension), both of which are passed initially to the linker, and even HEX files
(. hex extension), which are passed to one of the utility applications, called HEXMATE,
which is run right at the end of the compilation sequence.

Some of the temporary files shown in this diagram are actually preserved and can be
inspected after compilation has concluded. There are also driver options to request that
the compilation sequence stop after a particular application and the output of that
application becomes the final output.

1. Assembly file will be preprocessed before being passed to the assembler if the
- P option is selected.

DS52053B-page 76 © 2012 Microchip Technology Inc.

XC8 Command-line Driver

FIGURE 4-2: MULTI-FILE COMPILATION

| Intermediate files
|

E preprocess
C file > & >
parse
" "
O preprocess code
C file > & > " f assemble >1 link
parse generation
" & S

Iibrary
files
First stage of compilation Second stage of compilation

4.3.2 Single-Step Compilation

Figure 4-1 showed us the files that are generated by each application and the order in
which these applications are executed. However this does not indicate how these
applications are executed when there is more than one source file being compiled.

Consider the case when there are two C source files that form a complete project and
that are to be compiled, as is the case shown in Figure 4-2. If these files are called
mai n. ¢ and i 0. ¢, these could be compiled with a single command, such as:

xc8 --chi p=16F877A main.c io.c

This command will compile the two source files all the way to the final output, but
internally we can consider this compilation as consisting of two stages.

The first stage involves processing of each source file separately, and generating some
sort of intermediate file for each source file. The second stage involves combining all
these intermediate files and further processing to form the final output. An intermediate
file is a particular temporary file that is produced and marks the mid point between the
first and second stage of compilation.

The intermediate file used by xc8 is the p-code (. p1 extension) file output by the
parser, so there will be one p-code file produced for each C source file. As indicated in
the diagram, CPP and then P1 are executed to form this intermediate file. (For clarity
the CPP and P1 applications have been represented by the same block in the diagram.)

In the second stage, the code generator reads in all the intermediate p-code files and
produces a single assembly file output, which is then passed to the subsequent
applications that produce the final output.

The desirable attribute of this method of compilation is that the code generator, which
is the main application that transforms from the C to the assembly domain, sees the
entire project source code via the intermediate files.

Traditional compilers have always used intermediate files that are object files output by
the assembler. These intermediate object files are then combined by the linker and fur-
ther processed to form the final output. This method of compilation is shown in

Figure 4-3 and shows that the code generator is executed once for each source file.
Thus the code generator can only analyze that part of the project that is contained in
the source file currently being compiled. The MPLAB XC16 and XC32 compilers work
in this fashion.

Using object files as the intermediate file format with MPLAB XC8 C Compiler will
defeat many features the compiler uses to optimize code. Always use p-code files as
the intermediate file format if you are using a make system to build projects.

© 2012 Microchip Technology Inc. DS52053B-page 77

MPLAB® XC8 C Compiler User’s Guide

FIGURE 4-3: THE TRADITIONAL COMPILATION SEQUENCE
| Intermediate files
N |
preprocess]
C file > & COde. assemble
generation
parse
AN
preprocess
C file > & code. assemble
generation
parse

Second stage

First stage of compilation of compilation

When compiling files of mixed types, this can still be achieved with just one invocation
of the compiler driver. As discussed in Section 4.3 “The Compilation Sequence”, the
driver will pass each input file to the appropriate compiler application.

For example, the files, mai n. ¢, i 0. ¢, ndef . as and c_sb. | pp are to be compiled.
To perform this in a single step, the following command line could be used.

xc8 --chi p=16F877A main.c io.c ndef.as c_sbh.lpp

As shown in Figure 4-1 and Figure 4-2, the two C files (mai n. ¢ andi 0. ¢) will be com-
piled to intermediate p-code files; these, along with the p-code library file (c_sb. | pp)
will be passed to the code generator. The output of the code generator, as well as the
assembly source file (mdef . as), will be passed to the assembler.

The driver will recompile all source files, regardless of whether they have changed
since the last build. IDEs (such as MPLAB® IDE) and make utilities must be employed
to achieve incremental builds. See also Section 4.3.3 “Multi-Step Compilation”.

Unless otherwise specified, a HEX file and Microchip COFF file are produced as the
final output. All intermediate files remain after compilation has completed, but most
other temporary files are deleted, unless you use the - - NODEL option (see

Section 4.8.40 “--NODEL: Do Not Remove Temporary Files”) which preserves all
generated files except the run-time start-up file. Note that some generated files may be
in a different directory to your project source files. See Section 4.8.43 “--OUTDIR:
Specify a Directory For Output Files” and Section 4.8.41 “--OBJDIR: Specify a
Directory For Intermediate Files” which can both control the destination for some
output files.

DS52053B-page 78

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.3.3 Multi-Step Compilation

Make utilities and IDEs, such as MPLAB IDE, allow for an incremental build of projects
that contain multiple source files. When building a project, they take note of which
source files have changed since the last build and use this information to speed up
compilation.

For example, if compiling two source files, but only one has changed since the last
build, the intermediate file corresponding to the unchanged source file need not be
regenerated.

MPLAB IDE is aware of the different compilation sequence employed by xc 8 and takes
care of this for you. From MPLAB IDE you can select an incremental build (Build Project
icon), or fully rebuild a project (Clean and Build Project icon).

If the compiler is being invoked using a make utility, the make file will need to be con-
figured to recognized the different intermediate file format and the options used to gen-
erate the intermediate files. Make utilities typically call the compiler multiple times: once
for each source file to generate an intermediate file, and once to perform the second
stage compilation.

You may also wish to generate intermediate files to construct your own library files.
However, xc8 is capable of constructing libraries in a single step, so this is typically not
necessary. See Section 4.8.44 “--OUTPUT= type: Specify Output File Type” for
more information on library creation.

The option - - PASS1 (Section 4.8.45 “--PASS1: Compile to P-code”) is used to tell
the compiler that compilation should stop after the parser has executed. This will leave
the p-code intermediate file behind on successful completion.

For example, the files mai n. ¢ and i 0. ¢ are to be compiled using a make utility. The
command lines that the make utility should use to compile these files might be
something like:

xc8 --chi p=16F877A --passl nmain.c
xc8 --chi p=16F877A --passl io.c
xc8 --chi p=16F877A main. pl io.pl

If is important to note that the code generator needs to compile all p-code or p-code
library files associated with the project in the one step. When using the - - PASS1 option
the code generator is not being invoked, so the above command lines do not violate
this requirement.

Using object files as the intermediate file format with MPLAB XC8 C Compiler will
defeat many features the compiler uses to optimize code. Always use p-code files as
the intermediate file format if you are using a make system to build projects.

© 2012 Microchip Technology Inc. DS52053B-page 79

MPLAB® XC8 C Compiler User’s Guide

43.4 Compilation of Assembly Source

Since the code generator performs many tasks that were traditionally performed by the
linker, there could be complications when assembly source is present in a project.
Assembly files are traditionally processed after C code, but it is necessary to have this
performed first so that specific information contained in the assembly code can be
conveyed to the code generator.

The specific information passed to the code generator is discussed in more detail in
Section 5.12.3 “Interaction Between Assembly and C Code”.

When assembly source is present, the order of compilation is as shown in Figure 4-4.

FIGURE 4-4: COMPILATION SEQUENCE WITH ASSEMBLY FILES

— T A - c°de
| “ generation ezl
" T
ASM "
; > assemble
file

driver

Any assembly source files are first assembled to form object files. These files, along
with any other objects files that are part of the project, are then scanned by the com-
mand-line driver and information is then passed to the code generator when it
subsequently builds the C files, as has been described earlier.

4.3.41 INTERMEDIATE FILES AND ASSEMBLY SOURCE

The intermediate file format associated with assembly source files is the same as that
used in traditional compilers; i.e., an object file (. obj extension). Assembly files are
never passed to the code generator and so the code generator technology does not
alter the way these files are compiled.

The - C option (see Section 4.8.1 “-C: Compile to Object File") is used to generate
object files and halt compilation after the assembly step.

4.3.5 Printf Check

An extra execution of the code generator is performed prior to the actual code genera-
tion phase. This pass is part of the process by which the pri nt f library function is
customized, see Section 5.11.1 “The printf Routine” for more details.

This pass is only associated with scanning the C source code for pri nt f placeholder
usage and you will see the code generator being executed if you select the verbose
option when you build, see Section 4.8.15 “-V: Verbose Compile”.

DS52053B-page 80 © 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.4 RUNTIME FILES

In addition to the C and assembly source files specified on the command line, there are
also compiler-generated source files and pre-compiled library files which might be
compiled into the project by the driver. These files contain:

» C Standard library routines

« Implicitly called arithmetic routines
» User-defined library routines

e The runtime startup code

« The powerup routine

e The pri ntf routine.

Strictly speaking, the power-up routine is neither a compiler-generated source, nor a
library routine. It is fully defined by the user, however as it is very closely associated
with the runtime startup module, it is discussed with the other runtime files in the
following sections.

441 Library Files

The names of the C standard library files appropriate for the selected target device, and
other driver options, are determined by the driver and passed to the code generator and
linker. You do not need to manually include library files into your project. P-code librar-
ies (. | pp libraries) are used by the code generator, and object code libraries (. | i b
files) are used by the linker. Most library routines are derived from p-code libraries.

By default, xc8 will search the | i b directory under the compiler installation directory
for library files that are required during compilation.

4.4.1.1 STANDARD LIBRARIES

The C standard libraries contain a standardized collection of functions, such as string,
math and input/output routines. The range of these functions are described in
Appendix A. “Library Functions”. Although it is considered a library function, the
pri ntf function’s code is not found in these library files. C source code for this func-
tion is generated from a special C template file that is customized after analysis of the
user’s C code. See Section “PRINTF, VPRINTF” for more information on using the
pri ntf library function and Section 5.11.1 “The printf Routine” for information on
how the printf function is customized when you build a project.

The libraries also contain C routines that are implicitly called by the output code of the
code generator. These are routines that perform tasks such as floating-point opera-
tions, integer division and type conversions, and that may not directly correspond to a
C function call in the source code.

The library name formatis f ami | y-t ype- opti ons. | pp, where the following apply.

« fam |y can either be pi c18 for PIC18 devices, or pi ¢ for all other 8-bit PIC
devices

 t ype indicates the sort of library functionality provided and may be st dl i b for
the standard library functions, ort r ace, etc.

e opti ons indicate hyphen-separated names to indicate variants of the library to
accommodate different compiler options or modes, e.g., ht ¢ for HI-TECH C com-
patibility, d32 for 32-bit doubles, etc.

For example, the standard library for baseline and midrange devices using 24-bit dou-
bl e typesis pi c-stdl i b-d24.1 pp.

All the libraries are presentin the | i b directory of the compiler installation. Search this
directory for the full list of all libraries supplied.

© 2012 Microchip Technology Inc. DS52053B-page 81

MPLAB® XC8 C Compiler User’s Guide

4412 USER-DEFINED LIBRARIES

User-defined libraries may be created and linked in with programs as required. Library
files are more easy to manage and may result in faster compilation times, but must be
compatible with the target device and options for a particular project. Several versions
of a library may need to be created to allow it to be used for different projects.

Libraries can be created manually using the compiler and the librarian, L1 BR. See
Section 8.2 “Librarian” for more information on the librarian and creating library files
using this application. Alternatively, library files can be created directly from the
compiler by specifying a library output using the - - QUTPUT option, see

Section 4.8.44 “--OUTPUT= type: Specify Output File Type”.

User-created libraries that should be searched when building a project can be listed on
the command line along with the source files.

As with Standard C library functions, any functions contained in user-defined libraries
should have a declaration added to a header file. It is common practice to create one
or more header files that are packaged with the library file. These header files can then
be included into source code when required.

Library files specified on the command line are scanned first for unresolved symbols,
so these files may redefine anything that is defined in the C standard libraries. See also
Section 5.15.4 “Replacing Library Modules”.

4.4.2 Startup and Initialization

A C program requires certain objects to be initialized and the device to be in a particular
state before it can begin execution of its function mai n. It is the job of the runtime
startup code to perform these tasks. Section 5.10.1 “Runtime Startup Code” details
specifically what actions are taken by this code and how it interacts with programs you
write.

Rather than the traditional method of linking in a generic, precompiled routine, the
MPLAB XC8 C Compiler determines what runtime startup code is required from the
user’s program and then generates this code each time you build.

Both the driver and code generator are involved in generating the runtime startup code.
The driver creates the code which handles device setup and this code is placed into a
separate assembly startup module. The code generator produces code which initial-
izes the C environment, such as clearing uninitialized C variables and copying
initialized C variables. This code is output along with the rest of the C program.

The runtime startup code is regenerated every time you build a project. The file created
by the driver may be deleted after compilation, and this operation can be controlled with
the keep suboption to the - - RUNTI ME option. The default operation of the driver is to
keep the startup module; however, if using MPLAB IDE to build, file will be deleted
unless you indicate otherwise in the Project Properties dialog, see.

If the startup module is kept, it will be called st art up. as and will be located in the
current working directory. If you are using an IDE to perform the compilation the
destination directory may be dictated by the IDE itself. MPLAB X IDE store this file in
the di st/ def aul t/ producti on directory in your project directory.

DS52053B-page 82

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

Generation of the runtime startup code is an automatic process which does not require
any user interaction; however, some aspects of the runtime code can be controlled, if
required, using the - - RUNTI ME option. Section 4.8.50 “--RUNTIME: Specify Run-
time Environment” describes the use of this option. See Section 5.10.1 “Runtime
Startup Code” which describes the functional aspects of the code contained in this
module and its effect on program operation.

The runtime startup code is executed before mai n, but If you require any special initial-
ization to be performed immediately after reset, you should use power-up feature
described later in Section 5.10.2 “The Powerup Routine”.

© 2012 Microchip Technology Inc. DS52053B-page 83

MPLAB® XC8 C Compiler User’s Guide

45 COMPILER OUTPUT

There are many files created by the compiler during the compilation. A large number of
these are intermediate files and some are deleted after compilation is complete, but
many remain and are used for programming the device, or for debugging purposes.

451 Output Files

The names of many output files use the same base name as the source file from which
they were derived. For example, the source file i nput . ¢ will create a p-code file called
i nput . pl.

Some of the output files contain project-wide information and are not directly associ-
ated with any one particular input file, e.g., the map file. If the names of these output
files are not specified by a compiler option, their base name is derived from the first C
source file listed on the command line. If there are no files of this type specified, the
name is based on the first input file (regardless of type) on the command line.

If you are using an IDE, such as MPLAB X IDE, to specify options to the compiler, there
is typically a project file that is created for each application. The name of this project is
used as the base name for project-wide output files, unless otherwise specified by the
user. However check the manual for the IDE you are using for more details.

Note: Throughout this manual, the term project name will refer to either the name
of the project created in the IDE, or the base name (file name without
extension) of the first C source file specified on the command line.

The compiler is able to directly produce a number of the output file formats which are
used by the 8-bit PIC development tools.

The default behavior of xc8 is to produce a Microchip format COFF and Intel HEX out-
put. Unless changed by a driver option, the base names of these files will be the project
name. The default output file types can be controlled by compiler options, e.g., the

- - QUTPUT option. The extensions used by these files are fixed and are listed together
with this option’s description in Section 4.8.44 “--OUTPUT= type: Specify Output
File Type”.

The COFF file is used by debuggers to obtain debugging information about the project.

Table 4-14 shows all output format options available with xc8 using the - - QUTPUT
option. The File Type column lists the filename extension which will be used for the
output file.

4511 SYMBOL FILES

xc8 creates two symbol files which are used to generate the debug output files, such
as COFF and ELF files. These are the SYM files (.symextension) produced by the
linker, and the SDB file (.sdb extension) produced by the code generator.

The SDB file contains type information, and the SYM file contains address informa-
tion.These two files, in addition to the HEX file, are combined by the CROMAELL appli-
cation (see Section 8.5 “CROMWELL") to produce the output debug files, such as the
COFF file.

DS52053B-page 84 © 2012 Microchip Technology Inc.

XC8 Command-line Driver

45.2 Diagnostic Files

Two valuable files produced by the compiler are the assembly list file, produced by the
assembler, and the map file, produced by the linker.

The compiler options - - ASMLI ST (Section 4.8.16 “--ADDRQUAL: Set Compiler
Response to Memory Qualifiers”) generates a list file, and the - Moption
(Section 4.8.8 “-M: Generate Map File”) specifies generation of a map file.

The assembly list file contains the mapping between the original source code and the
generated assembly code. It is useful for information such as how C source was
encoded, or how assembly source may have been optimized. It is essential when con-
firming if compiler-produced code that accesses objects is atomic, and shows the
psects in which all objects and code are placed. For an introductory guide to psects,
see Section 5.15.1 “Program Sections”. And, see Section 6.5 “Assembly-Level
Optimizations” for more information on the contents of this file.

There is one list file produced for the entire C program, including C library files, and
which will be assigned the project name and extension . | st . One additional list file is
produced for each assembly source file compiled in the project.

The map file shows information relating to where objects were positioned in memory. It
is useful for confirming if user-defined linker options were correctly processed, and for
determining the exact placement of objects and functions. It also shows all the unused
memory areas in a device and memory fragmentation. See Section 7.4 “Map Files”

for complete information on the contents of this file.

There is one map file produced when you build a project, assuming the linker was exe-
cuted and ran to completion. The file will be assigned the project name and . nap
extension.

© 2012 Microchip Technology Inc. DS52053B-page 85

MPLAB® XC8 C Compiler User’s Guide

46 COMPILER MESSAGES

All compiler applications, including the command-line driver, xc8, use textual mes-
sages to report feedback during the compilation process. A centralized messaging sys-
tem is used to produce the messages, which allows consistency during all stages of the
compilation process. The messaging system is described in this section and a com-
plete list of all warning and error messages can be found in Appendix B. “Error and
Warning Messages”.

4.6.1 Messaging Overview

A message is referenced by a unique number which is passed to the messaging sys-
tem by the compiler application that needs to convey the information. The message
string corresponding to this number is obtained from Message Description Files (MDF),
which are stored in the dat directory in the compiler’s installation directory.

When a message is requested by a compiler application, its number is looked up in the
MDF that corresponds to the currently selected language. The language of messages
can be altered as discussed in Section 4.6.2 “Message Language”.

Once found, the alert system can read the message type and the string to be displayed
from the MDF. There are several different message types which are described in
Section 4.6.3 “Message Type” and the type can be overridden by the user, as
described in the same section.

The user is also able to set a threshold for warning message importance, so that only
those which the user considers significant will be displayed. In addition, messages with
a particular number can be disabled. A pragma can also be used to disable a particular
message number within specific lines of code. These methods are explained in
Section 4.6.5.1 “Disabling Messages”.

Provided the message is enabled and it is not a warning message whose level is below
the current warning threshold, the message string will be displayed.

In addition to the actual message string, there are several other pieces of information
that may be displayed, such as the message number, the name of the file for which the
message is applicable, the file’s line number and the application that issued the
message, etc.

If a message is an error, a counter is incremented. After a certain number of errors has
been reached, compilation of the current module will cease. The default number of
errors that will cause this termination can be adjusted by using the - - ERRORS option,
see Section 4.8.29 “--ERRORS: Maximum Number of Errors”. This counter is reset
for each internal compiler application, thus specifying a maximum of five errors will
allow up to five errors from the parser, five from the code generator, five from the linker,
five from the driver, etc.

Although the information in the MDF can be modified with any text editor, this is not rec-
ommended. Message behavior should only be altered using the options and pragmas
described in the following sections.

DS52053B-page 86 © 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.6.2 Message Language

X8 supports more than one language for displayed messages. There is one MDF for
each language supported.

Under Windows, the default language can be specified when installing the compiler.

The default language may be changed on the command line using the - - LANG option,
see Section 4.8.35 “--LANG: Specify the Language for Messages”. Alternatively, it
may be changed permanently by using the - - LANG option together with the - - SETUP
option which will store the default language in either the registry, under Windows, or in
the XML configuration file on other systems. On subsequent builds, the default
language used will be that specified.

Table 4-3 shows the MDF applicable for the currently supported languages.

TABLE 4-3: SUPPORTED LANGUAGES

Language MDF name
English en_nsgs. t xt
German de_msgs. t xt
French fr_msgs. txt

If a language other than English is selected, and the message cannot be found in the
appropriate non-English MDF, the alert system tries to find the message in the English
MDF-. If an English message string is hot present, a message similar to:

error/warning (*) generated, but no description available

where * indicates the message number that was generated that will be printed;
otherwise, the message in the requested language will be displayed.

4.6.3 Message Type

There are four types of messages. These are described below along with the com-
piler’'s behavior when encountering a message of each type.

Advisory Messages convey information regarding a situation the compiler has en-
countered or some action the compiler is about to take. The information is
being displayed “for your interest” and typically requires no action to be
taken. Compilation will continue as normal after such a message is issued.

Warning Messages indicate source code or some other situation that can be com-
piled, but is unusual and may lead to a runtime failure of the code. The code
or situation that triggered the warning should be investigated; however, com-
pilation of the current module will continue, as will compilation of any
remaining modules.

Error Messages indicate source code that is illegal or that compilation of this code
cannot take place. Compilation will be attempted for the remaining source
code in the current module, but no additional modules will be compiled and
the compilation process will then conclude.

Fatal Error Messages indicate a situation that cannot allow compilation to proceed
and which requires the compilation process to stop immediately.

© 2012 Microchip Technology Inc. DS52053B-page 87

MPLAB® XC8 C Compiler User’s Guide

4.6.4 Message Format

By default, messages are printed in a human-readable format. This format can vary
from one compiler application to another, since each application reports information
about different file formats.

Some applications (for example, the parser) are typically able to pinpoint the area of
interest down to a position on a particular line of C source code, whereas other appli-
cations, such as the linker, can at best only indicate a module name and record number,
which is less directly associated with any particular line of code. Some messages relate
to issues in driver options which are in no way associated with any source code.

There are several ways of changing the format in which message are displayed, which
are discussed below.

The driver option - E (with or without a filename) alters the format of all displayed mes-
sages. See Section 4.8.3 “-E: Redirect Compiler Errors to a File”. Using this option
produces messages that are better suited to machine parsing, and are less
user-friendly. Typically each message is displayed on a single line. The general form of
messages produced when using the - E option is:

filename line: (message nunber) nessage string

(type)

The - E option also has another effect. When used, the driver first checks to see if spe-
cial environment variables have been set. If so, the format dictated by these variables
are used as a template for all messages produced by all compiler applications. The
names of these environment variables are given in Table 4-4.

TABLE 4-4: MESSAGING ENVIRONMENT VARIABLES

Variable

Effect

HTC_MSG_FORVAT

All advisory messages

HTC_WARN_FORMAT

All warning messages

HTC_ERR_FORVAT

All error and fatal error messages

The value of these environment variables are strings that are used as templates for the
message format. Printf-like placeholders can be placed within the string to allow the
message format to be customized. The placeholders and what they represent are
indicated in Table 4-5.

TABLE 4-5: MESSAGING PLACEHOLDERS
Placeholder Replacement
%a Application name
% Column number
% Filename
% Line number
% Message number
Y%s Message string (from MDF)

If these options are used in a DOS batch file, two percent characters will need to be
used to specify the placeholders, as DOS interprets a single percent character as an
argument and will not pass this on to the compiler. For example:

SET HTC ERR FORVAT="file 9%®4: line %4"

Environment variables, in turn, may be overridden by the driver options: - - M5SGFOR-
MAT, - - WARNFORMAT and - - ERRFORMAT, see Section 4.8.28 “--ERRFORMAT:
Define Format for Compiler Messages”. These options take a string as their argu-

ment. The option strings are formatted, and can use the same placeholders, as their
variable counterparts.

DS52053B-page 88

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

For example, a project is compiled, but, as shown, produces a warning from the parser
and an error from the linker (numbered 362 and 492, respectively).
mai n.c: main()
17: ip = &b;
N (362) redundant "&" applied to array (warning)
(492) attenpt to position absolute psect "text" is illegal

Notice that the parser message format identifies the particular line and position of the
offending source code.

If the - E option is now used and the compiler issues the same messages, the compiler
will output:

mai n.c: 12: (362) redundant "&" applied to array (warning)
(492) attenpt to position absolute psect "text" is illegal (error)

The user now uses the - - WARNFORMAT in the following fashion:
- - WARNFORMAT="%a % % % %"
When recompiled, the following output will be displayed:

parser 362 12 nmin.c redundant "&" applied to array
(492) attenpt to position absolute psect "text" is illegal (error)

Notice that the format of the warning was changed, but that of the error message was
not. The warning format now follows the specification of the environment variable. The
application name (par ser) was substituted for the % placeholder, the message
number (362) substituted the % placeholder, etc.

© 2012 Microchip Technology Inc. DS52053B-page 89

MPLAB® XC8 C Compiler User’s Guide

4.6.5 Changing Message Behavior

Both the attributes of individual messages and general settings for the messaging sys-
tem can be modified during compilation. There are both driver options and C pragmas
that can be used to achieve this.

4.6.5.1 DISABLING MESSAGES

Each warning message has a default number indicating a level of importance. This
number is specified in the MDF and ranges from -9 to 9. The higher the number, the
more important the warning.

Warning messages can be disabled by adjusting the warning level threshold using the
- - WARN driver option, see Section 4.8.59 “--WARN: Set Warning Level”. Any warn-
ings whose level is below that of the current threshold are not displayed.

The default threshold is 0 which implies that only warnings with a warning level of O or
higher will be displayed by default. The information in this option is propagated to all
compiler applications, so its effect will be observed during all stages of the compilation
process.

Warnings may also be disabled by using the - - MSGDI SABLE option, see

Section 4.8.38 “--MSGDISABLE: Disable Warning Messages”. This option takes a
comma-separated list of message numbers. Those warnings listed are disabled and
will never be issued, regardless of the current warning level threshold.

Some warning messages can also be disabled by using the war ni ng pragma. This
pragma will only affect warnings that are produced by either the parser or the code gen-
erator; i.e., errors directly associated with C code. See Section 5.14.4.11 “The
#pragma warning Directive” for more information on this pragma.

Error messages can also be disabled; however, a more verbose form of the command
is required to confirm the action. To specify an error message number in the - - MSG
DI SABLE command, the number must be followed by : of f to ensure that itis disabled.
For example: - - MSGDI SABLE=195: of f will disable error number 195.

Note: Disabling error or warning messages in no way fixes the condition which
triggered the message. Always use extreme caution when exercising these
options.

4.6.5.2 CHANGING MESSAGE TYPES

It is also possible to change the type of some messages. This can only be done for
messages generated by the parser or code generator. See Section 5.14.4.11 “The
#pragma warning Directive” for more information on this pragma.

DS52053B-page 90

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.7 XC8 DRIVER OPTIONS

This section looks at the general form of xc8 command-line options and what action
the compiler will perform if no option is specified for a certain feature.

4.7.0.1 GENERAL OPTION FORMATS

All single letter options are identified by a leading dash character, “- ", for example: - C.
Some single letter options specify an additional data field which follows the option
name immediately and without any whitespace, for example: - Ddebug. In this manual,
options are written in upper case and suboptions are in lower case.

Multi-letter, or word, options have two leading dash characters, for example:
- - ASMLI ST. (Because of the double dash, the driver can determine that the option
- - DOUBLE, for example, is not a - D option followed by the argument OUBLE.)

Some of these word options use suboptions which typically appear as a comma-sepa-
rated list following an equal character, =, for example: - - OUTPUT=hex, cof . The exact
format of the options varies and are described in detail in the following sections.

Some commonly used suboptions include def aul t, which represent the default spec-
ification that would be used if this option was absent altogether; al | , which indicates
that all the available suboptions should be enabled as if they had each been listed; and
none, which indicates that all suboptions should be disabled. For example:

- - OPT=none
will turn off all optimizers.

Some suboptions may be prefixed with a plus character, +, to indicate that they are in
addition to the other suboptions present, or a minus character “- ”, to indicate that they
should be excluded. For example:

--OPT=defaul t,-asm

indicates that the default optimization be used, but that the assembler optimizer should
be disabled. If the first character after the equal sign is + or -, then the default keyword
is implied. For example:

--OPT=-asm
is the same as the previous example.

See the — HELP option, Section 4.8.33 “--HELP: Display Help”, for more information
about options and suboptions.

4.7.1 Default Options

If you run the compiler driver from the command line and do not specify the option for
a feature, it will default to a certain state. You can also specify the def aul t suboption
to double-dash options which will also invoke the default behavior. You can check what
the default behavior is by using the - - HELP=0pt i on on the command line, see
4.8.33 “--HELP: Display Help”.

If you are compiling from within the MPLAB X IDE, it will, by default, issue explicit
options to the compiler (unless changed in the Project Properties dialog), and these
options may be different to those that are the default on the command line. For exam-
ple, unless you specify the - - ASMLI ST option on the command line, the default oper-
ation of the compiler is to not produce an assembly list file. However, if you are
compiling from within the MPLAB X IDE, the default operation — in fact this cannot be
disabled — is to always produce an assembly list file.

If you are compiling the same project from the command line and from the MPLAB X
IDE, always check that all options are explicitly specified.

© 2012 Microchip Technology Inc. DS52053B-page 91

MPLAB® XC8 C Compiler User’s Guide

4.8 OPTION DESCRIPTIONS

Most aspects of the compilation can be controlled using the command-line driver, xc8.
The driver will configure and execute all required applications, such as the code

generator, assembler and linker.

xc8 recognizes the compiler options which are tabled below and are explained in detail
in the sections following. The case of the options is not important, however command
shells in most operating systems are case sensitive when it comes to names of files.

TABLE 4-6: DRIVER OPTIONS
Option Meaning
-C Compile to object file and stop
- Dnmacro Define preprocessor macro symbol
-Efi |l enanme Redirect compile errors
-dfil enane] Generate symbolic debug information
-l path Specify include path
- Lar gunent Set linker option
-Mfil enane] Generate map file
- Nnunber Specify identifier length
-Oile Specify output filename and type
-P Preprocess assembly source
-Q Quiet mode
-S Compile to assembly file and stop
- Umacro Undefine preprocessor macro symbol
-V Verbose mode
- - ADDRQUAL=qual i fi er Specify address space qualifier handling
-- ASMLI ST Generate assembly list file
--Cd Enforce and expect CCI rules
- - CHAR=t ype Default character type (defunct)

- - CHECKSUM=speci fi cation

Calculate a checksum and store the result in program
memaory

- - CHI P=devi ce Select target device

- - CHI PI NFO Print device information

- - CODEOFFSET=val ue Specify ROM offset address

- - DEBUGGER=t ype Set debugger environment

- - DOUBLE=si ze Size of double type

- - ECHO Echo command line

- - EM =node Select external memory interface operating mode
- - ERRATA=t ype Specify errata workarounds

- - ERRFORVAT=f or mat

Set error format

- - ERRORS=nunber

Set maximum number of errors

--Fl LL=speci fication

Specify a ROM-fill value for unused memory

- - FLQAT=si ze Size of float type

- - GETOPTI ON=ar gunent Get advanced options

- - HELP=opti on Help

--HTM.=file Generate HTML debug files

- - LANG=l anguage

Specify language

- - MEMVAP=mapfil e

Display memory map

- - MODE=npde

Choose operating mode

DS52053B-page 92

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

TABLE 4-6:

DRIVER OPTIONS (CONTINUED)

Option

Meaning

- - M5@DI SABLE=I i st

Disable warning messages

- - MSGFORMAT=speci fi cati on

Set advisory message format

- - NODEL Do not remove temporary files

- - NCEXEC Do not execute compiler applications
--OBJDI R=pat h Set object files directory

--OPT=optim zations Control optimization

- - QUTDI R=pat h Set output directory

- - QUTPUT=pat h Set output formats

- - PASS1 Produce intermediate p-code file and stop
--PRE Produce preprocessed source files and stop
- - PROTO Generate function prototypes

- - RAMET anges Adjust RAM ranges

- - ROVEr anges Adjust ROM ranges

- - RUNTI ME=opt i ons Specify runtime options

- - SCANDEP Scan for dependencies

- - SERI AL=speci fi cation

Insert a hexadecimal code or serial number

- - SETOPTI ONFar gunent

Set advanced options

-- SETUP=speci fication

Setup the compiler

- - SHROUD Shroud (obfuscate) generated p-code files
--STRICT Use strict ANSI keywords

- - SUMVARY=t ype Summary options

--TIME Report compilation times

--VER Show version information

- - WARN=nunber Set warning threshold level

- - WARNFORMAT=speci fi cat i on | Set warning format
4.8.1 -C: Compile to Object File

The - Coption is used to halt compilation after executing the assembler, leaving a relo-
catable object file as the output. It is frequently used when compiling assembly source
files using a make utility. It cannot be used unless all C source files are present on the
command line. Use - - PASS1 to generate intermediate files from C source, see
Section 4.8.45 “--PASS1: Compile to P-code”.

See Section 4.3.3 “Multi-Step Compilation” for more information on generating and
using intermediate files.

© 2012 Microchip Technology Inc. DS52053B-page 93

MPLAB® XC8 C Compiler User’s Guide

48.2 -D: Define Macro

The - Doption is used to define a preprocessor macro on the command line, exactly as
if it had been defined using a #def i ne directive in the source code. This option may
take one of two forms, - Dmacr o which is equivalent to:

#define macro 1

placed at the top of each module compiled using this option, or - Dnacr o=t ext which
is equivalent to:

#define macro text
where t ext is the textual substitution required. Thus, the command:
XC8 --CH P=16F877AA - Ddebug - Dbuffers=10 test.c

will compile t est . ¢ with macros defined exactly as if the C source code had included
the directives:

#define debug 1
#define buffers 10

Defining macros as C string literals requires bypassing any interpretation issues in the
operating system that is being used. To pass the C string, " hel | o wor | d", (including
the quote characters) in the Windows environment, use: " - DMY_STRI NG=\\\"hel | o
wor | d\\\"" (you must include the quote characters around the entire option as there
is a space character in the macro definition). Under Linux or Mac OS X, use:
-DMY_STRI NG=\"hel | o\ world\".

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.3 -E: Redirect Compiler Errors to a File

This option has two purposes. The first is to change the format of displayed messages.
The second is to optionally allow messages to be directed to a file as some editors do
not allow the standard command line redirection facilities to be used when invoking the
compiler.

The general form of messages produced with the - E option in force is:
filename |ine_nunber: (nmessage number) nessage string (type)

If a flename is specified immediately after - E, it is treated as the name of a file to which
all messages (errors, warnings, etc.) will be printed. For example, to compile x. ¢ and
redirect all errors to x. er r, use the command:

XC8 --CH P=16F877AA -Ex.err X.c

The - E option also allows errors to be appended to an existing file by specifying an
addition character, +, at the start of the error filename, for example:

XC8 --CH P=16F877AA -E+x.err y.c

If you wish to compile several files and combine all of the errors generated into a single
text file, use the - E option to create the file then use - E+ when compiling all the other
source files. For example, to compile a number of files with all errors combined into a
file called pr oj ect . err, you could use the - E option as follows:

XC8 --CH P=16F877AA -Eproject.err -O --PASS1l main.c
XCc8 --CH P=16F877AA -E+project.err -0 --PASSl1 partl.c
XC8 --CH P=16F877AA - E+project.err -C asntode. as

Section 4.6 “Compiler Messages” has more information regarding this option as well
as an overview of the messaging system and other related driver options.

DS52053B-page 94

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

48.4 -G: Generate Source-Level Symbol File

The - Goption allows specification of the flename used for the source-level symbol file
(. symextension) for use with supported debuggers and simulators such as MPLAB
IDE. See also Section 4.5 “Compiler Output”.

If no filename is given, the symbol file will have the project name (see

Section 4.2 “Invoking the Compiler”), and an extension of . sym For example, the
option - & est . symgenerates a symbol file called t est . sym Symbol files generated
using the - Goption include source-level information for use with source-level debug-
gers.

4.8.5 -I: Include Search Path

Use - | to specify an additional directory to search for header files which have been
included using the #i ncl ude directive. The directory can either be an absolute or rel-
ative path. The - | option can be used more than once if multiple directories are to be
searched.

The compiler’s i ncl ude directory containing all standard header files is always
searched, evenifno - | option is present. If header filenames are specified using quote
characters rather than angle brackets, as in #i ncl ude "1 cd. h", then the current
working directory is searched in addition to the compiler’si ncl ude directory. Note that
if compiling within MPLAB IDE, the search path is relative to the output directory, not
the project directory.

These default search paths are searched after any user-specified directories have
been searched. For example:

XC8 --CH P=16F877AA -C -lc:\include -1d:\nyapp\include test.c

will search the directories c: \'i ncl ude and d: \ myapp\ i ncl ude for any header files
included into the source code, then search the default include directory.

This option has no effect for files that are included into assembly source using the
assembly | NCLUDE directive. See Section 6.4.10.4 “INCLUDE".

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.6 -L: Scan Library

The - L option is used to specify additional libraries which are to be scanned by the
linker. Libraries specified using the - L option are scanned before the standard C library,
allowing additional versions of standard library functions to be accessed.

The argument to - L is a library keyword to which the prefix pi ¢; numbers representing
the device range, number of ROM pages and the number of RAM banks; and the suffix

. 1i b are added.
Thus the option - LI when compiling for a 16F877A will, for example, scan the library
pi c42c-1 .1 i b and the option - Lxx will scan a library called pi c42c- xx. |i b.

All libraries must be located in the | i b directory of the compiler installation directory.

As indicated, the argument to the - L option is not a complete library filename. If you
wish the linker to scan libraries whose names do not follow the above naming conven-
tion or whose locations are not in the | i b subdirectory, simply include the libraries’
names on the command line along with your source files, or add these to your project.

© 2012 Microchip Technology Inc. DS52053B-page 95

MPLAB® XC8 C Compiler User’s Guide

4.8.7 -L-: Adjust Linker Options Directly

The - L driver option can be used to specify an option which will be passed directly to
the linker. If - L is followed immediately by text starting with a dash character “- ”, the
text will be passed directly to the linker without being interpreted by xc8. If the - L
option is not followed immediately by a dash character, it is assumed the option is the
library scan option, Section 4.8.6 “-L: Scan Library”.

For example, if the option - L- Nis specified, the - Noption will be passed on to the linker
without any subsequent interpretation by the driver. The linker will then process this
option, when, and if, it is invoked, and perform the appropriate operation.

Take care with command-line options. The linker cannot interpret command-line driver
options; similarly the driver cannot interpret linker options. In most situations, it is
always the command-line driver, xc8, that is being executed. If you need to add alter-
nate linker settings in the Linker category in the Project Properties dialogue, you must
add driver options (not linker options). These driver options will be used by the driver
to generate the appropriate linker options during the linking process. The - L option is
a means of allowing a linker option to be specified via a driver option.

The - L option is especially useful when linking code which contains non-standard pro-
gram sections (or psects), as may be the case if the program contains hand-written
assembly code which contains user-defined psects (see 6.4.9.3 “PSECT” and
Section 5.15.1 “Program Sections”), or C code which uses the #pr agna psect
directive (see 5.14.4.8 “The #pragma psect Directive”). Without this - L option, it
would be necessary to invoke the linker manually to allow the linker options to be
adjusted.

This option can also be used to replace default linker options. If the string starting from
the first character after the - L up to the first equal character, "=", matches a psect or

class name in the default options, then (the reference to the psect or class name in the
default option, and the remainder of that option, are deleted) that default linker option
is replaced by the option specified by the - L. For example, if a default linker option was:

-preset _vec=00h,intentry,init,end_init

the driver option - L- pi ni t =100h would result in the following options being passed
to the linker: - pi ni t =100h - preset _vec=00h. Note the end_i ni t linker option
has been removed entirely. If there are no characters following the first equal character
in the - L option, then no replacement will be made for the default linker options that will
be deleted. For example, the driver option - L- pi ni t = will adjust the default options
passed to the linker, as above, butthe - pi ni t linker option would be removed entirely.

No warning is generated if such a default linker option cannot be found. The default
option that you are deleting or replacing must contain an equal character.

4.8.8 -M: Generate Map File

The - Moption is used to request the generation of a map file. The map file is generated
by the linker and includes detailed information about where objects are located in mem-
ory. See Section 7.4 “Map Files” for information regarding the content of these files.

If no filename is specified with the option, then the name of the map file will have the
project name (see Section 4.3 “The Compilation Sequence”), with the extension
. map.

This option is on by default when compiling from within MPLAB X IDE and using the
Universal Toolsuite.

DS52053B-page 96

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.8.9 -N: Identifier Length

This option allows the significant C identifier length (used by functions and variables)
to be decreased from the default value of 255. Valid sizes for this option are from 32 to
255. The option has no effect for all other values.

This option also controls the significant length of identifiers used by the preprocessor,
such as macro names. The default length is also 255, and can be adjusted to a
minimum of 31.

If the - - STRI CT option is used, the default significant identifier length is reduced to 31.
Code which uses a longer identifier length will be less portable.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.10 -O: Specify Output File

This option allows the basename of the output file(s) to be specified. If no - Ooption is
given, the base name of output file(s) will be the same as the project name, see
Section 4.3 “The Compilation Sequence”. The files whose names are affected by
this option are those files that are not directly associated with any particular source file,
such as the HEX file, MAP file and SYM file.

The - Ooption can also change the directory in which the output file is located by includ-
ing the required path before the filename. This will then also specify the output directory
for any files produced by the linker or subsequently run applications. Any relative paths
specified are with respect to the current working directory.

For example, if the option - Oc: \ proj ect\ out put\first is used, the MAP and
HEX file, etc., will use the base name fi r st , and will be placed in the directory
c:\project\output.

Any extension supplied with the filename will be ignored.

The options that specify MAP file creation (- M see Section 4.8.8 “-M: Generate Map
File”), and SYM file creation (- G see Section 4.8.4 “-G: Generate Source-Level
Symbol File") override any name or path information provided by - Orelevant to the
MAP and SYM file.

To change the directory in which all output and intermediate files are written, use the
- - QUTDI R option, see Section Section 4.8.43 “--OUTDIR: Specify a Directory For
Output Files”. Note that if - Ospecifies a path which is inconsistent with the path
specified in the - - QUTDI R option, this will result in an error.

4.8.11 -P: Preprocess Assembly Files

The - P option causes assembler source files to be preprocessed before they are
assembled, thus allowing the use of preprocessor directives, such as #i ncl ude, and
C-style comments with assembler code.

By default, assembler files are not preprocessed.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.12 -Q: Quiet Mode

This option places the compiler in a quiet mode which suppresses the Microchip
Technology Incorporated copyright notice from being displayed.

© 2012 Microchip Technology Inc. DS52053B-page 97

MPLAB® XC8 C Compiler User’s Guide

4.8.13 -S: Compile to Assembler Code

The - S option stops compilation after generating an assembly output file. One
assembly file will be generated for all the C source code, including p-code library code.

The command xc8 --CHIP=16F877A -S test.c will produce an assembly file called

t est . as, which contains the assembly code generated fromt est . ¢c. The generated
file is valid assembly code which could be passed to xc8 as a source file, however this
should only be done for exploratory reasons. To take advantage of the benefits of the
compilation technology in the compiler, it must compile and link all the C source code
in a single step. See the - - PASS1 option (Section 4.8.45 “--PASS1: Compile to
P-code”) to generate intermediate files if you wish to compile code using a two-step
process or use intermediate files.

This option is useful for checking assembly code output by the compiler. The file pro-
duced by this option differs to that produced by the - - ASMLI ST option (see

Section 4.8.16 “--ADDRQUAL.: Set Compiler Response to Memory Qualifiers”) in
that it does not contain op-codes or addresses and it may be used as a source file in
subsequent compilations. The assembly list file is more human readable, but is not a
valid assembly source file.

48.14 -U: Undefine a Macro

The - U option, the inverse of the - D option, is used to undefine predefined macros.
This option takes the form - Umacr o, where nacr o is the name of the macro to be
undefined

The option, - Udr af t , for example, is equivalent to:
#undef draft
placed at the top of each module compiled using this option.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.15 -V: Verbose Compile

The - V option specifies verbose compilation. When used, the compiler will display the
command lines used to invoke each of the compiler applications described in
Section 4.3 “The Compilation Sequence”.

The name of the compiler application being executed will be displayed, plus all the
command-line arguments to this application. This option is useful for confirming options
and files names passed to the compiler applications.

If this option is used twice (- V - V), it will display the full path to each compiler applica-
tion as well as the full command-line arguments. This would be useful to ensure that
the correct compiler installation is being executed, if there is more than one compiler
installed.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

DS52053B-page 98 © 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.8.16 --ADDRQUAL: Set Compiler Response to Memory Qualifiers
The - - ADDRQUAL option indicates the compiler’s response to non-standard memory
qualifiers in C source code.

By default these qualifiers are ignored,; i.e., they are accepted without error, but have
no effect. Using this option allows these qualifiers to be interpreted differently by the
compiler.

The near qualifier is affected by this option. On PIC18 devices, this option also affects
the f ar qualifier; and for other 8-bit devices, the bankx qualifiers (bank0, bank1,
bank2, etc.) are affected.

The suboptions are detailed in Table 4-7.

TABLE 4-7: COMPILER RESPONSES TO MEMORY QUALIFIERS

Selection Response
require The qualifiers will be honored. If they cannot be met, an error will be issued.
request The qualifiers will be honored, if possible. No error will be generated if they
cannot be followed.
i gnore The qualifiers will be ignored and code compiled as if they were not used.
rej ect If the qualifiers are encountered, an error will be immediately generated.

For example, when using the option - - ADDRQUAL=r equest the compiler will try to
honor any non-standard qualifiers, but silently ignore them if they cannot be met.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.17 --ASMLIST: Generate Assembler List Files

The - - ASMLI ST option tells xc8 to generate assembler listing files for the C and
assembly source modules being compiled. One assembly list file is produced for the
entire C program, including code from the C library functions.

Additionally, one assembly list file is produced for each assembly source file in the
project, including the runtime startup code. For more information, see
Section 4.4.2 “ Startup and Initialization”.

Assembly list files use a . | st extension and, due to the additional information placed
in these files, cannot be used as assembly source files.

In the case of listings for C source code, the list file shows both the original C code and
the corresponding assembly code generated by the compiler. See

Section 6.5 “Assembly-Level Optimizations” for full information regarding the
content of these files.

The same information is shown in the list files for assembly source code.
This option is on by default when compiling under MPLAB IDE.

4.8.18 --CCI: Enforce and Expect CCI Conformance

Enabling this option will request the compiler to check all source code and compiler

options for compliance with the Common Compiler Interface (CCI) standard. Code that
complies with this standard is portable across all MPLAB XC compilers. (The document
describing the CCI standard is pending at the time of this user’s guide’s writing.) Code
or options that do not conform to the CCl standard will be flagged by compiler warnings.

© 2012 Microchip Technology Inc. DS52053B-page 99

MPLAB® XC8 C Compiler User’s Guide

48.19 --CHECKSUM: Calculate a Checksum

This option will perform a checksum over the address range specified and store the
result at the destination address specified. The general form of this option is as follows.
- CHECKSUM=st art - end@lest i nation[, of fset=][,w dth=w][, code=c][,al gorith
n¥a]

Additional specifications are appended as a comma-separated list to this option. Such
specifications are:

width=n selects the width of the checksum result in bytes. A negative width will store
the result in little-endian byte order. Result widths from one to four bytes are
permitted.

offset=nnnn specifies an initial value or offset to be added to this checksum.

algorithm=n select one of the checksum algorithms implemented in HEXMATE. The
selectable algorithms are described in Table 8-9.

code=nn is a hexadecimal code that will trail each byte in the checksum result. This
can allow each byte of the checksum result to be embedded within an
instruction.

Thestart,endanddesti nati on attributes are, by default, hexadecimal constants.
If an accompanying - - FI LL option has not been specified, unused locations within the
specified address range will be filled with FFFh for baseline devices, 3FFFh for
mid-range devices, or FFFF for PIC18 devices. This is to remove any unknown values
from the equation and ensure the accuracy of the checksum result.

For example:
--checksum=800-f f f @0, wi dt h=1, al gori t hm=8

will calculate a 1 byte checksum from address 0x800 to Oxfff and store this at address
0x20. Fletcher’s algorithm will be used. See Section 8.6.1.5 “-CK".

The checksum calculations are performed by the HEXMATE application. The informa-
tion in this driver option is passed to the HEXMATE application when it is executed.

4.8.20 --CHIP: Define Device

This option must be used to specify the target device, or device, for the compilation.
This is the only compiler option that is mandatory when compiling code.

To see a list of supported devices that can be used with this option, use the - - CHI P-
I NFOoption described in Section 4.8.21 “--CHIPINFO: Display List of Supported
Devices”.

4.8.21 --CHIPINFO: Display List of Supported Devices

The - - CHI PI NFOoption displays a list of devices the compiler supports. The names
listed are those chips defined in the chipinfo file and which may be used with the
- - CHI P option.

Compiler execution will terminate after this list has been printed.

DS52053B-page 100 © 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.8.22 --CODEOFFSET: Offset Program Code to Address

In some circumstances, such as bootloaders, it is necessary to shift the program image
to an alternative address. This option is used to specify a base address for the program
code image and to reserve memory from address 0 to that specified in the option.

When using this option, all code psects (including Reset and interrupt vectors and con-
stant data) will be adjusted to the address specified. The address is assumed to be a
hexadecimal constant. A leading 0x, or a trailing h hexadecimal specifier can be used,
but is not necessary.

This option differs from the - - ROM option in that it will move the code associated with
the Reset and interrupt vectors which cannot be done using the - - ROMoption, see
Section 4.8.49 “--ROM: Adjust ROM Ranges”.

For example, if the option - - CODEOFFSET=600 is specified, the Reset vector will be
moved from address 0 to address 0x600; the interrupt vector will be moved from

address 4 to 0x604, in the case of mid-range PIC devices, or to the addresses 0x608
and 0x618 for PIC18 devices. No code will be placed between address 0 and 0x600.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.23 --DEBUGGER: Select Debugger Type

This option is intended for use for compatibility with development tools which can act
as a debugger. xc8 supports several debuggers and using this option will configure the
compiler to conform to the requirements of that selected. The possible selections for

this option are defined in Table 4-8.

TABLE 4-8: SELECTABLE DEBUGGERS

Suboption Debugger selected
none No debugger (default)
i cd2 MPLAB® ICD 2
icd3 MPLAB ICD 3
pi ckit2 PICkit™ 2
pi ckit3 PICkit 3
realice MPLAB REAL ICE™ in-circuit emulator

For example:
XC8 --CH P=16F877AA - - DEBUGGER=i cd2 mai n.c

Choosing the correct debugger is important as they can use memory resources that
could otherwise be used by the project if this option is omitted. Such a conflict would
lead to runtime failure.

If the debugging features of the development tool are not to be used (for example, if the
MPLAB ICD 3 is only being used as a programmer), then the debugger option can be
set to none, because memory resources are not being used by the tool.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE. MPLAB X IDE should automatically apply this option for debug
builds only once you have indicated the hardware tool in the Project Preferences.

© 2012 Microchip Technology Inc. DS52053B-page 101

MPLAB® XC8 C Compiler User’s Guide

4.8.24 --DOUBLE: Select Kind of Double Types

This option allows the kind of double-precision floating-point types to be selected. By
default the compiler will choose the truncated IEEE754 24-bit implementation for
doubl e types. With this option, this can be changed to the full 32-bit IEEE754
implementation.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.25 --ECHO: Echo Command Line Before Processing

Use of this option will result in the driver command line being echoed to the st dout
stream before compilation commences. Each token of the command line will be printed
on a separate line and will appear in the order in which they are placed on the
command line.

4.8.26 --EMI: Select External Memory Interface Operating Mode

The external memory interface available on some PIC18 devices can be operated in
several modes. The interface can operate in 16-bit modes; word write and byte select
mode or in an 8-bhit mode: byte write mode. These modes are represented by those
specified in Table 4-9.

TABLE 4-9: EXTERNAL MEMORY INTERFACE MODES

Mode Operation
wordwite 16-hit word write mode (default)
byt esel ect 16-bit byte select mode
bytewite 8-bit byte write mode

The selected mode will affect the code generated when writing to the external data
interface. In word write mode, dummy reads and writes may be added to ensure that
an even number of bytes are always written. In byte select or byte write modes, dummy
reads and writes are not generated and can result in more efficient code.

Note that this option does not pre-configure the device for operation in the selected
mode. See your device data sheet for the registers and settings that are used to
configure the device’s external interface mode.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

DS52053B-page 102

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.8.27 --ERRATA: Specify Errata Workarounds

This option allows specification of software workarounds to documented silicon errata
issues. A default set of errata issues apply to each device, but this set can be adjusted
by using this option and the arguments presented in Table 4-10.

TABLE 4-10: ERRATA WORKAROUNDS

Symbol Workaround
4000 Program mem accesses/jumps across 4000h address boundary
fastints Fast interrupt shadow registers corruption
Ifsr Broken LFSR instruction
minus40 Program memory reads at -40 degrees
reset GOTO instruction cannot exist at Reset vector
bsri5 Flag problems when BSR holds value 15
daw Broken DAW instruction
eedatard Read EEDAT in immediate instruction after RD set
eeadr Don't set RD bit immediately after loading EEADR
ee_lvd LVD must stabilise before writing EEPROM
fl_Ivd LVD must stabilise before writing Flash
tblwtint Clear interrupt registers before tblwt instruction
fw4000 Flash write exe must act on opposite side of 4000h boundary.
resetram RAM contents can corrupt if async. Reset occur during write access.
fetch Corruptible instruction fetch. Apply FFFFh (NOP) at required locations.

At present workarounds are only employed for PIC18 devices.
To disable all software workarounds, use the following.
- - ERRATA=none

To apply the default set of workarounds, but to specifically disable the jump across
4000 errata, for example, use the following.

- - ERRATA=def aul t, - 4000

A preprocessor macro ERRATA TYPES (see Section 5.14.3 “Predefined Macros”) is
set to a value to indicate the errata applied. Each errata listed in Table 4-10 represents
a bit position in the value, with the top most errata in the table the least significant. The
bit position is set if the errata is applied. That is, if the 4000, r eset and bsr 15 errata
were applied, the value assigned to ERRATA TYPES would be 0x31.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

© 2012 Microchip Technology Inc. DS52053B-page 103

MPLAB® XC8 C Compiler User’s Guide

4.8.28 --ERRFORMAT: Define Format for Compiler Messages

If the - - ERRFORMAT option is not used, the default behavior of the compiler is to dis-
play any errors in a “human readable” form. This standard format is perfectly accept-
able to a person reading the error output, but is not generally usable with environments
which support compiler error handling.

This option allows the exact format of printed error messages to be specified using spe-
cial placeholders embedded within a message template. See Section 4.6 “Compiler
Messages” for full details of the messaging system employed by xc8, and the
placeholders which can be used with this option.

This section is also applicable to the - - WARNFORMAT and - - MSGFORMAT options,
which adjust the format of warning and advisory messages, respectively.

If you are compiling using MPLAB IDE, the format of the compiler messages is auto-
matically configured to what the IDE expects. It recommended that you do not adjust
the message formats if compiling using this IDE.

48.29 --ERRORS: Maximum Number of Errors

This option sets the maximum number of errors each compiler application, as well as
the driver, will display before execution is terminated. By default, up to 20 error
messages will be displayed by each application.

See Section 4.6 “Compiler Messages” for full details of the messaging system
employed by xc8.

4.8.30 --FILL: Fill Unused Program Memory

This option allows specification of a hexadecimal opcode that can be used to fill all
unused program memory locations. This option utilizes the features of the HEXMATE
application, so it is only available when producing a HEX output file, which is the default
operation.

This driver feature allows you to compile and fill unused locations in one step. If you
prefer not to use the driver option and prefer to fill unused locations after compilation,
then you will need to explicitly use the HEXMATE application. Note the corresponding
option in HEXMATE is - FI LL (one leading dash) as opposed to the drivers - - FI LL
option. Note, also, that the unused tag which can be specified with the driver option
does not exist in the HEXMATE options.

The usage of the driver option is:

--FILL=[const _width:]fill_expr[@ddress[: end_address]]

where:

e const _wi dt h has the form wn and signifies the width (n bytes) of each constant
infill _expr.Ifconst_w dt h is not specified, the default value is the native

width of the architecture. That is, - - FI LL=wl: 1 with fill every byte with the value
0x01.

« fill _expr can use the syntax (where const and i ncr enent are n-byte

constants):

- const fill memory with a repeating constant; i.e., - - FI LL=0xBEEF becomes
OXBEEF, OXBEEF, OXBEEF, OXBEEF

- const +=i ncrenent fill memory with an incrementing constant; i.e.,
--fill=0xBEEF+=1 becomes OxBEEF, 0XBEF0, OXBEF1, OXBEF2

- const - =i ncr ement fill memory with a decrementing constant; i.e.,
--fill =0xBEEF- =0x10 becomes 0xBEEF, 0OXBEDF, 0OxBECF, OxBEBF

- const, const, ..., const fillmemory with a list of repeating constants; i.e.,
- - FI LL=0xDEAD, 0x BEEF becomes OxDEAD,0xBEEF,0xDEAD,0xBEEF

DS52053B-page 104

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

» The options following fi | I _expr result in the following behavior:

- @nused (or nothing) fill all unused memory withfi |l | _expr;i.e.,
- - FI LL=OxBEEF@nused fills all unused memory with OXBEEF. The driver
will expand this to the appropriate ranges and pass these to HEXMATE.

- @ddr ess fill a specific address with fi | | _expr;i.e.,
- - FI LL=0OxBEEF@x 1000 puts OXBEEF at address 1000h

- @ddr ess: end_addr ess fill a range of memory with fi I | _expr;i.e.,
- - FI LL=0OxBEEF@: OxFF puts OXBEEF in unused addresses between 0 and
255

All constants can be expressed in (unsigned) binary, octal, decimal or hexadecimal, as
per normal C syntax, so for example 1234 is a decimal value, OXFFOO is hexadecimal
and FFOO is illegal.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.31 --FLOAT: Select Kind of Float Types

This option allows the size of f | oat types to be selected. The types available to be
selected are given in Table 4-11.

See also the - - DOUBLE option in Section 4.8.24 “--DOUBLE: Select Kind of Double

Types”.
TABLE 4-11: FLOATING-POINT SELECTIONS
Suboption Effect
doubl e Size of float matches size of doubl e type
24 24-hit float (default)
32 32-bit float (IEEE754)

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.32 --GETOPTION: Get Command-line Options

This option is used to retrieve the command line options which are used for named
compiler application. The options are then saved into the given file. This option is not
required for most projects, and is disabled when the compiler is operating in Free mode
(see Section 4.8.37 “--MODE: Choose Compiler Operating Mode”).

The options take an application name and a filename to store the options, for example:
- - GETOPTI ON=hl i nk, opti ons. t xt

4.8.33 --HELP: Display Help

This option displays information on the xc8 compiler options. The option - - HELP will
display all options available. To find out more about a particular option, use the option’s
name as a parameter. For example:

xc8 --hel p=warn

will display more detailed information about the - - WARN option, the available
suboptions, and which suboptions are enabled by default.

© 2012 Microchip Technology Inc. DS52053B-page 105

MPLAB® XC8 C Compiler User’s Guide

4.8.34 --HTML: Generate HTML Diagnostic Files

This option will generate a series of HTML files that can be used to explore the compi-
lation results of the latest build. The files are stored in a directory called ht il , located
in the output directory. The top level file (which can be opened with your favorite web

browser) is called i ndex. htni .

Use this option at all stages of compilation to ensure files associated with all compila-
tion stages are generated.

The index page is a graphical representation of the compilation process. Each file icon
is clickable and will open with the contents of that file. This is available for all interme-
diate files, and even binary files open in a human-readable form. Each application icon
can also be clicked to show a page containing information about that application’s
options and build results.

The list of all preprocessor macros (preprocessor icon) and a graphical memory usage
map (Linker icon) provide information that is not otherwise readily accessible.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.35 --LANG: Specify the Language for Messages

This option allows the compiler to be configured to produce error, warning and some
advisory messages in languages other than English.

English is the default language unless this has been changed at installation, or by the
use of the - - SETUP option. Some messages are only ever printed in English regard-
less of the language specified with this option. For more information, see

Section 4.6.2 “Message Language”.

Table 4-12 shows those languages currently supported.

TABLE 4-12: SUPPORTED LANGUAGES

Suboption Language
en, engli sh English (default)
fr,french,francais French
de, ger man, deut sch German

48.36 --MEMMAP: Display Memory Map

This option will display a memory map for the map file specified with this option. The
information printed is controlled by the - - SUMMARY option, see

Section 4.8.56 “--SUMMARY: Select Memory Summary Output Type”, for exam-
ple:

XCc8 --mermrap=si ze. map --sunmary=psect, class,file

This option is seldom required, but would be useful if the linker is being driven explicitly;
i.e., instead of in the normal way through the command-line driver. This command
would display the memory summary which is normally produced at the end of compila-
tion by the driver.

4.8.37 --MODE: Choose Compiler Operating Mode

This option selects the basic operating mode of the compiler. The available types are
pro,stdandfree. Forlegacy projects, the mode | i t e is accepted to mean the Free
operating mode. A compiler operating in PRO mode uses full optimization and pro-
duces the smallest code size. Standard mode uses limited optimizations, and Free
mode only uses a minimum optimization level and will produce relatively large code.

DS52053B-page 106

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

Only those modes permitted by the compiler license status will be accepted. For exam-
ple if you have purchased a Standard compiler license, that compiler may be run in
Standard or Free mode, but not the PRO mode.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.38 --MSGDISABLE: Disable Warning Messages

This option allows warning or advisory messages to be disabled during compilation of
a project. The nessagel i st is a comma-separated list of warning numbers that are
to be disabled. If the number of an error is specified, it will be ignored by this option. If
the message list is specified as 0, then all warnings are disabled. See

Section 4.6.5 “Changing Message Behavior” for other ways to disable messages.

For full information on the compiler’'s messaging system, see Section 4.6 “Compiler
Messages”.

4.8.39 --MSGFORMAT: Set Advisory Message Format

This option sets the format of advisory messages produced by the compiler. Warning
and error messages are controlled separately by other options. See

Section 4.8.28 “--ERRFORMAT: Define Format for Compiler Messages” and
Section 4.8.60 “--WARNFORMAT: Set Warning Message Format” for information
on changing the format of these sorts of messages.

See Section 4.6 “Compiler Messages” for full information on the compiler’s messag-
ing system.

If you are compiling using MPLAB IDE, the format of the compiler messages is auto-
matically configured to what the IDE expects. It recommended that you do not adjust
the message formats if compiling using this IDE.

4.8.40 --NODEL: Do Not Remove Temporary Files

Specifying - - NODEL when building will instruct xc 8 not to remove the intermediate and
temporary files that were created during the build process.

4.8.41 --OBJDIR: Specify a Directory For Intermediate Files

This option allows a directory to be nominated in xc8 to locate its intermediate files. If
this option is omitted, intermediate files will be created in the current working directory.

This option will not set the location of output files, instead use - - OUTDI R. See
Section 4.8.43 “--OUTDIR: Specify a Directory For Output Files” and
Section 4.8.10 “-O: Specify Output File” for more information.

© 2012 Microchip Technology Inc. DS52053B-page 107

MPLAB® XC8 C Compiler User’s Guide

4.8.42 --OPT: Invoke Compiler Optimizations

The - - OPT option allows control of all the compiler optimizers. If this option is not spec-
ified, or it is specified as - - OPT=al | , the space and asmoptimizations are enabled
(see below). Optimizations may be disabled by using - - OPT=none, or individual opti-
mizers may be controlled, for example: - - OPT=asmwill only enable some assembler
optimizations.

Table 4-13 lists the available optimization types.

TABLE 4-13: OPTIMIZATION OPTIONS

Option name Function
asm Select optimizations of assembly code derived from C source (default)
asnfile Select optimizations of assembly source files
debug Favor accurate debugging over optimization
speed Favor optimizations that result in faster code
space Favor optimizations that result in smaller code (default)
al | Enable all compiler optimizations
none Do not use any compiler optimizations

Note that different suboptions control assembler optimizations of assembly source files
and intermediate assembly files produced from C source code.

The speed and space suboptions are contradictory. Space optimizations are the
default. If speed and space suboptions are both specified, then speed optimizations
takes precedence. If al | optimizations are requested, the space optimization is
enabled. These optimizations affect procedural abstraction, which is performed by the
assembler, and other optimizations at the code generation stage.

The asnf i | e selection optimizes assembly source files, which are otherwise not opti-
mized by the compiler. By contrast, the asmcontrol allows for optimization of assembly
code that was derived from C code, an optimization that is enabled by default.

Some compiler optimizations may affect the ability to debug code. Enabling the debug
suboption may restrict some optimizations that would otherwise normally take place
and which would affect debugging.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.43 --OUTDIR: Specify a Directory For Output Files

This option allows a directory to be nominated for xc8 to locate its output files. If this
option is omitted, output files will be created in the current working directory. See also
Section 4.8.41 “--OBJDIR: Specify a Directory For Intermediate Files” and
Section 4.8.10 “-O: Specify Output File” for more information.

DS52053B-page 108 © 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.8.44 --OUTPUT=type: Specify Output File Type

This option allows the type of the output file(s) to be specified. If no - - OQUTPUT option
is specified, the output file’s name will be the same as the project name (see
Section 4.3 “The Compilation Sequence”).

The available output file format are shown in Table 4-14. More than one output format
may be specified by supplying a comma-separated list of tags. Not all formats are
supported by Microchip development tools.

Those output file types which specify library formats stop the compilation process
before the final stages of compilation are executed. Hence specifying an output file for-
mat list containing, for example: | i b or al I will prevent the other formats from being
created.

TABLE 4-14: OUTPUT FILE FORMATS

Type tag File format
lib Object library file
I pp P-code library file
intel Intel HEX (default)
t ek Tektronic
aahex American Automation symbolic HEX file
not Motorola S19 HEX file
bi n Binary file
ncof Microchip COFF (default)

So, for example:
XC8 --CH P=16F877AA --OQUTPUT=Il pp lcd_init.c Icd_data.c |cd_nsgs.c
will compile the three names files into an LPP (p-code) library.

4.8.45 --PASS1: Compile to P-code

The - - PASSL1 option is used to generate p-code intermediate files (. p1 file) from the
parser, then stop compilation. Such files need to be generated if creating p-code library
files, however the compiler is able to generate library files in one step, if required. See
Section 4.8.44 “--OUTPUT=type: Specify Output File Type” for specifying a library
output file type.)

4.8.46 --PRE: Produce Preprocessed Source Code

The - - PRE option is used to generate preprocessed C source files (also called mod-
ules or translation units) with an extension . pr e. This may be useful to ensure that pre-
processor macros have expanded to what you think they should. Use of this option can
also create C source files which do not require any separate header files. If the . pre
files are renamed to . c files that can be passed to the compiler for subsequent pro-
cessing. This is useful when sending files to a colleague or to obtain technical support
without having to send all the header files, which may reside in many directories.

If you wish to see the preprocessed source for the pri nt f () family of functions, do
not use this option. The source for this function is customized by the compiler, but only
after the code generator has scanned the project for pri nt f () usage. Thus, as the
—- PRE option stops compilation after the preprocessor stage, the code generator will
not execute and no pri nt f () code will be processed. If this option is omitted, the
preprocessed source for pri nt f () will be automatically retained in the file

doprnt. pre.

© 2012 Microchip Technology Inc. DS52053B-page 109

MPLAB® XC8 C Compiler User’s Guide

4.8.47 --PROTO: Generate Prototypes

The - - PROTOoption is used to generate . pr o files containing both ANSI C and K&R
style function declarations for all functions within the specified source files. Each . pr o
file produced will have the same base name as the corresponding source file. Proto-

type files contain both ANSI C-style prototypes and old-style C function declarations

within conditional compilation blocks.

The ext er n declarations from each . pr o file should be edited into a global header file,
which can then be included into all the C source files in the project. The . pr o files may
also contain st at i ¢ declarations for functions which are local to a source file. These
st at i ¢ declarations should be edited into the start of the source file.

To demonstrate the operation of the - - PROTOoption, enter the following source code
asfiletest. c:

#i ncl ude <stdio. h>
add(argl, arg2)

int * argl;
int * arg2;
{
return *argl + *arg2;
}
void printlist(int * list, int count)
{
while (count--)
printf("d " *list++);
putchar('\n’);
}

If compiled with the command:
XC8 --CH P=16F877AA --PROTO test.c

xc8 will produce t est . pr o containing the following declarations which may then be
edited as necessary:

/* Prototypes fromtest.c */

/* extern functions - include these in a header file */
#if PROTOTYPES

extern int add(int *, int *);

extern void printlist(int *, int);

#el se /* PROTOTYPES */

extern int add();

extern void printlist();

#endi f /* PROTOTYPES */

DS52053B-page 110 © 2012 Microchip Technology Inc.

XC8 Command-line Driver

48.48 --RAM: Adjust RAM Ranges

This option is used to adjust the default RAM, which is specified for the target device.
The default memory will include all the on-chip RAM specified for the target
P1C10/12/16 device, thus this option only needs be used if there are special memory
requirements. Typically this option is used to reserve memory (reduce the amount of
memory available). Specifying additional memory that is not in the target device will
typically result in a successful compilation, but may lead to code failures at runtime.

The default RAM memory for each target device is specified in the chipinfo file,
Pl CC18. I NI (for PIC18 devices) or PI CC. | NI (for all other 8-bit devices).

Strictly speaking, this option specifies the areas of memory that may be used by writ-
able (RAM-based) objects, and not necessarily those areas of memory which contain
physical RAM. The output that will be placed in the ranges specified by this option are
typically variables that a program defines.

For example, to specify an additional range of memory to that already present on-chip,
use:

- - RAM=def aul t, +100- 1f f

This will add the range from 100h to 1ffh to the on-chip memory. To only use an external
range and ignore any on-chip memory, use:

- - RAM=O- f f

This option may also be used to reserve memory ranges already defined as on-chip
memory in the chipinfo file. To do this, supply a range prefixed with a minus character,
-, for example:

- - RAM=def aul t, - 100- 103

will use all the defined on-chip memory, but not use the addresses in the range from
100h to 103h for allocation of RAM objects.

This option is also used to specify RAM for f ar objects on PIC18 devices. These
objects are stored in the PIC18 extended memory. Any additional memory specified
with this option whose address is above the on-chip program memory is assumed to
be extended memory implemented as RAM.

For example, to indicate that RAM has been implemented in the extended memory
space at addresses 0x20000 to 0x20fff, use the following option.

- - RAM=def aul t , +20000- 20f f f

This option will adjust the memory ranges used by linker classes, see

Section 7.2.1 “-Aclass =low-high,...”, and hence any object which is in a psect is
placed in this class. Any objects contained in a psect that are explicitly placed at a
memory address by the linker (see Section 7.2.19 “-Pspec”) i.e., are not placed into
amemory class, are not affected by the option. For an introductory guide to psects, see
Section 5.15.1 “Program Sections”.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

© 2012 Microchip Technology Inc. DS52053B-page 111

MPLAB® XC8 C Compiler User’s Guide

48.49 --ROM: Adjust ROM Ranges

This option is used to change the default ROM which is specified for the target device.
The default memory will include all the on-chip ROM specified for the target
P1C10/12/16 device, thus this option only needs to be used if there are special memory
requirements. Typically this option is used to reserve memory (reduce the amount of
memory available). Specifying additional memory that is not in the target device will
typically result in a successful compilation, but may lead to code failures at runtime.

The default ROM memory for each target device is specified in the chipinfo file,
Pl CC18. | NI (for PIC18 devices) or PI CC. | NI (for all other 8-bit devices).

Strictly speaking, this option specifies the areas of memory that may be used by
read-only (ROM-based) objects, and not necessarily those areas of memory which
contain physical ROM. When producing code that may be downloaded into a system
via a bootloader, the destination memory may be some sort of (volatile) RAM. The out-
put that will be placed in the ranges specified by this option are typically executable
code and any data variables that are qualified as const .

For example, to specify an additional range of memory to that on-chip, use:
- - ROMEdef aul t, +100- 2f f

This will add the range from 100h to 2ffh to the on-chip memory. To only use an external
range and ignore any on-chip memory, use:

- - ROME100- 2f f

This option may also be used to reserve memory ranges already defined as on-chip
memory in the chip configuration file. To do this supply a range prefixed with a minus
character, -, for example:

- - ROMEdef aul t, - 100- 1f f

will use all the defined on-chip memory, but not use the addresses in the range from
100h to 1ffh for allocation of ROM objects.

This option will adjust the memory ranges used by linker classes, see

Section 7.2.1 “-Aclass =low-high,...”, and hence any object which is in a psect
placed in this class. Any objects which are contained in a psect that are explicitly placed
at a memory address by the linker (see Section 7.2.19 “-Pspec”), i.e., are not placed
into a memory class, are not affected by the option. For an introductory guide to psects,
see Section 5.15.1 “Program Sections”.

Note that some psects must be linked above a threshold address, most notably some
psects that hold const data. Using this option to remove the upper memory ranges may
make it impossible to place these psects.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.50 --RUNTIME: Specify Runtime Environment

The - - RUNTI ME option is used to control what is included as part of the runtime envi-
ronment. The runtime environment encapsulates any code that is present at runtime
which has not been defined by the user, instead supplied by the compiler, typically as
library code or compiler-generated source files.

All required runtime features are enabled by default and this option is not required for
normal compilation.

DS52053B-page 112

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

Note that the code that clears or initializes variables, which is included by default, will
clobber the contents of the STATUS register. For mid-range and baseline devices, if
you need to check the cause of Reset using the TO or PD bits in this register, then you
must enable the r eset bi t s suboption as well. See 5.10.1.4 “ STATUS Register
Preservation” for how this feature is used. The usable suboptions include those
shown in Table 4-15.

TABLE 4-15: RUNTIME ENVIRONMENT SUBOPTIONS
. . Default
Suboption Controls On (+) Implies State
init The code present in the main | The ROM image is copied into On
program module that copies | RAM and initialized variables will
the ROM-image of initial val- | contain their initial value at
ues to RAM variables. mai n().
clib The inclusion of library files Library files are linked into the On
into the output code by the output.
linker.
cl ear The code present in the main | Uninitialized variables are cleared On
program module that clears | and will contain 0 at mai n() .
uninitialized variables.
config Programming the device with | Configuration bits not specified will Off
default config bytes be assigned a default value.
(PIC18 only)
downl oad | Conditioning of the Intel HEX | Data records in the Intel HEX file Off
file for use with bootloaders. |are padded out to 16 byte lengths
and will align on 16 byte boundar-
ies. Startup code will not assume
Reset values in certain registers.
no_st art up | Whether the startup module is | Startup module will not be linked Off
linked in with user-defined in.
code.
osccal Initialize the oscillator with the | Oscillator will be calibrated. On
oscillator constant. (PIC10/12/16 only)
oscval : Set the internal clock oscilla- | Oscillator will be calibrated with Not
val ue tor calibration value. val ue supplied. (PIC10/12/16 specified
only)
keep Whether the start-up module | The start-up module is not deleted. On
source file (startup.as) is
deleted after compilation.
plib Whether the peripheral library | The peripheral library will be linked On
is linked in. in to the build. (PIC18 only)
reset bits |Preserve Power-down and STATUS bits are preserved. Off
Time-out STATUS bits at start | (PIC10/12/16 only)
up.
stackcal | |Allow function calls to use a | Functions called via CALL instruc- Off
table look-up method once tion while stack not exhausted,
the hardware stack has filled. |then called via a look-up table.
(PIC10/12/16 devices only.)

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in

MPLAB IDE.

© 2012 Microchip Technology Inc.

DS52053B-page 113

MPLAB® XC8 C Compiler User’s Guide

4851 --SCANDEP: Scan for Dependencies

When this option is used, . dep and . d dependency files are generated. The depen-
dency file lists those files on which the source file is dependant. Dependencies result
when one file is #i ncl uded into another. The . d file format is used by GCC-based
compilers and contains the same information as the . dep file.

Compilation will stop after the preprocessing stage if this option is used.

4.8.52 --SERIAL: Store a Value At This Program Memory Address

This option allows a hexadecimal code to be stored at a particular address in program
memory. A typical task for this option might be to position a serial number in program
memory.

The byte-width of data to store is determined by the byte-width of the hexcode param-
eter in the option. For example, to store a one byte value, 0, at program memory
address 1000h, use - - SERI AL=00@L000. To store the same value as a four byte
guantity use - - SERI AL=00000000@1.000.

This option is functionally identical to the corresponding HEXMATE option. For more
detailed information and advanced controls that can be used with this option, refer to
Section 8.6.1.15 “-SERIAL".

The driver will also define a label at the location where the value was stored, and which
can be referenced from C code as _seri al 0. To enable access to this symbol,
remember to declare it, for example:

extern const int _serialQO;

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.53 --SETOPTION: Set the Command-line Options For Application

This option is used to supply alternative command line options for the named
application when compiling. The general form of this option is: as follows.

- - SETOPTI ON=app, fil e

where the app component specifies the application that will receive the new options,
and the f i | e component specifies the name of the file that contains the additional
options that will be passed to the application. This option is not required for most
projects.

If specifying more than one option to a component, each option must be entered on a
new line in the option file. This option can also be used to remove an application from
the build sequence. If the f i | e parameter is specified as of f , execution of the named
application will be skipped. In most cases, this is not desirable as almost all applications
are critical to the success of the build process. Disabling a critical application will result
in catastrophic failure. However, it is permissible to skip a non-critical application such
as CLI ST or HEXMATE if the final results are not reliant on their function.

4854 --SHROUD: Obfuscate P-code Files

This option should be used in situations where either p-code files or p-code libraries
are to be distributed and are built from confidential source code.

C comments, which are normally included into these files, as well as line numbers and
variable names will be removed, or obfuscated, so that the original source code cannot
be reconstructed from the distributed files.

DS52053B-page 114

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.8.55 --STRICT: Strict ANSI Conformance

The - - STRI CT option is used to enable strict ANSI C conformance of all special,
non-standard keywords.

The MPLAB XC8 C compiler supports various special keywords (for example the per -
si st ent type qualifier). If the - - STRI CT option is used, these keywords are changed
to include two underscore characters at the beginning of the keyword (for example,
__persi st ent) so as to strictly conform to the ANSI standard. Thus if you use this
option, you will need to use the qualifier __per si st ent in your code, not

persi stent.

Be warned that use of this option may cause problems with some standard header files
(e.g., <xc. h>) as they contain special keywords.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4856 --SUMMARY: Select Memory Summary Output Type

Use this option to select the type of memory summary that is displayed after compila-
tion. By default, or if the memsuboption is selected, a memory summary is shown. This
shows the total memory usage for all memory spaces.

A psect summary may be shown by enabling the psect suboption. This shows individ-
ual psects, after they have been grouped by the linker, and the memory ranges they
cover. Table 4-16 shows what summary types are available. The output printed when
compiling normally corresponds to the mem setting.

TABLE 4-16: MEMORY SUMMARY SUBOPTIONS

Suboption Controls

psect A summary of psect names and the addresses where they were
linked will be shown.

mem A concise summary of memory used will be shown. (default)

cl ass A summary of all classes in each memory space will be shown.

hex A summary of addresses and HEX files which make up the final
output file will be shown.

file Summary information will be shown on screen and saved to a file.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.57 --TIME: Report Time Taken For Each Phase of Build Process

Adding the - - Tl ME option when building generates a summary which shows how
much time each stage of the build process took to complete.

4.8.58 --VER: Display the Compiler’s Version Information

The - - VER option will display what version of the compiler is running and then exit the
compiler.

© 2012 Microchip Technology Inc. DS52053B-page 115

MPLAB® XC8 C Compiler User’s Guide

4.8.59 --WARN: Set Warning Level

The - - WARN option is used to set the compiler warning level threshold. Allowable warn-
ing levels range from -9 to 9. The warning level determines how pedantic the compiler
is about dubious type conversions and constructs. Each compiler warning has a des-
ignated warning level; the higher the warning level, the more important the warning
message. If the warning message’s warning level exceeds the set threshold, the warn-
ing is printed by the compiler. The default warning level threshold is 0 and will allow all
normal warning messages.

Use this option with care as some warning messages indicate code that is likely to fail
during execution, or compromise portability.

Warning message can be individually disabled with the - - MSGDI SABLE option, see
Section 4.8.38 “--MSGDISABLE: Disable Warning Messages”. See also

Section 4.6 “Compiler Messages” for full information on the compiler’s messaging
system.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” or
Section 4.10 “MPLAB X Universal Toolsuite Equivalents” for use of this option in
MPLAB IDE.

4.8.60 --WARNFORMAT: Set Warning Message Format

This option sets the format of warning messages produced by the compiler. See
Section 4.8.28 “--ERRFORMAT: Define Format for Compiler Messages” for more
information on this option. For full information on the compiler’'s messaging system, see
Section 4.6 “Compiler Messages”.

If you are compiling using MPLAB IDE, the format of the compiler messages is auto-
matically configured to what the IDE expects. It recommended that you do not adjust
the message formats if compiling using this IDE.

DS52053B-page 116

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

49 MPLAB IDE V8 UNIVERSAL TOOLSUITE EQUIVALENTS

When compiling from within Microchip’s MPLAB IDE, it is still the compiler’s com-
mand-line driver, xc 8, that is being executed and compiling the program. The Universal
Toolsuite plugin manages the MPLAB IDE Build Options dialog that is used to access
the compiler options, and most of these graphical controls ultimately adjust the driver’s
command-line options. You can see the command-line options being used when
building in the Output window in MPLAB IDE.

The following dialogs and descriptions identify the mapping between the dialog controls
and command-line options. As the toolsuite is universal across all HI-TECH-branded
compilers, not all options are applicable for the MPLAB XC8 C Compiler.

If you are compiling with MPLAB X IDE, see Section 4.10 “MPLAB X Universal Tool-
suite Equivalents”.

Screen captures of the MPLAB IDE graphical user interface are presented on the
pages that follow. Detailed descriptions of the tabs, options and selections are also
included.

© 2012 Microchip Technology Inc. DS52053B-page 117

MPLAB® XC8 C Compiler User’s Guide

49.1 Directories Tab

The options in this dialog control the output and search directories for some files. See
Figure 4-5 in conjunction with the following command line option equivalents.

FIGURE 4-5: THE DIRECTORIES TAB

Directories]Eustom Build1 Trace] Diriwer 1 Eompiler1 Linker] Global1

Directonies and Search Paths-

Show directonies for: |Elut|3ut Drirectory LJ x
e] IInc:lucle Searc:hl Path . 1 *_F\

o
—©

Suite Defaults J

~ Build Directary Palicy
{* Azsemble/Compile in source-file directory, link in output directony

™ Assemble/Compils/Link in the project directary

ok I Cancel ‘ Apply ‘ Help J

1. The output directory: This selection uses the buttons and fields grouped in the

bracket to specify an output directory for files output by the compiler. This selec-
tion is handled internally by MPLAB IDE and does not use a driver option; how-
ever, it is functionally equivalent to the - - OQUTDI R driver option (see

Section 4.8.43 “--OUTDIR: Specify a Directory For Output Files”).

2. Include Search path: This selection uses the buttons and fields grouped in the

bracket to specify include (header) file search directories. See Section 4.8.5 “-I:
Include Search Path”.

DS52053B-page 118

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.9.2 Compiler Tab

The options in this dialog control the aspects of compilation up to code generation. See
Figure 4-6 in conjunction with the following command line option equivalents.

1. Define macros: The buttons and fields grouped in the bracket can be used to
define preprocessor macros. See Section 4.8.2 “-D: Define Macro” .

2. Undefine macros: The buttons and fields grouped in the bracket can be used to
undefine preprocessor macros. See Section 4.8.14 “-U: Undefine a Macro”.

3. Preprocess assembly: The checkbox controls whether assembly source files are
scanned by the preprocessor. See Section 4.8.11 “-P: Preprocess Assembly
Files”.

FIGURE 4-6: THE COMPILER TAB

Build Options For Project "watchptr.mcp™ ; 2=

Dilectoriesl Custom Buildl Trace I Diriver Compiler ILinkerI Globall

— Define machos

Hermave |

I Add.

~ Undefine macros

Hemaowe

| dd)

???

NG ¥ Preprocess aszembler | dentifier length I3‘I _,$i< o
= Optimization setings——————————— ~ Messages
v Global [Werbose e o
| v dzsembler
™ Speed ‘wharning level IE < o
[T Debua
Operation mode IF'FID VI — Addrezz qualifiers -
IEgno.‘e fl
I Bankl [T Bankl
[T Bankz: [T Banka
I | Eepram

QK I Cancel | Lppli | Helz |

4. Optimization settings: These controls are used to adjust the different optimiza-
tions the compiler employs. See Section 4.8.42 “--OPT: Invoke Compiler Opti-
mizations”.

5. ldentifier length: This selector controls the maximum identifier length in C source.
See Section 4.8.9 “-N: Identifier Length”.

© 2012 Microchip Technology Inc. DS52053B-page 119

MPLAB® XC8 C Compiler User’s Guide

6. Verbose: This checkbox controls whether the full command-lines for the compiler
applications are displayed when building. See Section 4.8.15 “-V: Verbose

Compile”.

7. Warning level: This selector allows the warning level print threshold to be set.
See Section 4.8.59 “--WARN: Set Warning Level”.

8. Operation Mode: This selector allows the user to force another available operat-
ing mode (e.g., Free, Standard or PRO) other than the default. See
Section 4.8.37 “--MODE: Choose Compiler Operating Mode”

9. Address Qualifier: This selector allows the user to select the behavior of the
address qualifier. See Section 4.8.16 “--ADDRQUAL: Set Compiler
Response to Memory Qualifiers”

49.3 Linker Tab

The options in this dialog control the link step of compilation. See Figure 4-7 in
conjunction with the following command line option equivalents.

FIGURE 4-7:

THE LINKER TAB

@—»

HBuild Options For Project “astest.mcp™]

Directories] Custom Buildi Trace 1 Diriveer 1 Compiler Linker lGIobaI1

Runtinie optiohs -
| Clearbss
- P

™| Iritialize bean
v Iritialize data
[~ Keep generated startup.as

Faormat hex file for download

Warh on stack overflow

Lirk in C Library

0 e e T e e e

[~ Intermupt optionz

Mumber af vectors ¥ 1
Wector table lozation '
Type of vector v 1

Lirker options -

Callgraph | Short form bl 9

Debugger |Mone -| ¢
Trace type <

Stack size |Specific size

Heap size |5pecific siz:

Frequency <

[~ Estend address 0in HEX file +q—1_|

— Summary options
[Display psect usage
[Display class usage

v Dizplay aw

[Display HEX uzage map

m[
Codeaffzet]7 il
Checksum]—‘]

Errata]—‘

Vectars |ROM

el g

.

.

=

v

erall memorny usage <

© 666 600000000

=1

Cancel

DS52053B-page 120

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

1. Runtime options: These checkboxes control the many runtime features the com-
piler can employ. See Section 4.8.50 “--RUNTIME: Specify Runtime Environ-
ment”.

2. Fill: This field allows a fill value to be specified for unused memory locations. See
Section 4.8.30 “--FILL: Fill Unused Program Memory”.

3. Codeoffset: This field allows an offset for the program to be specified. See
Section 4.8.22 “--CODEOFFSET: Offset Program Code to Address”.

4. Checksum: This field allows the checksum specification to be specified. See
Section 4.8.17 “--ASMLIST: Generate Assembler List Files”.

5. Errata: This field allows control over which software workarounds are employed
for errata issues. See Section 4.8.27 “--ERRATA: Specify Errata Work-
arounds”.

6. Vectors: Not applicable.
7. Callgraph: Not applicable.

8. Debugger: This selector allows the type of hardware debugger to be chosen. See
Section 4.8.23 “--DEBUGGER: Select Debugger Type”.

9. Trace type: Not yet implemented. Only native trace implemented.

10. Stack size: Not applicable.

11. Heap size: Not applicable.

12. Frequency: Not applicable.

13. Extend address 0 in HEX file: This option specifies that the intel HEX file should
have initialization to zero of the upper address. See
Section 4.8.44 *--OUTPUT= type: Specify Output File Type”.

14. Interrupt options: Not applicable.

15. Summary Options: These checkboxes control which summaries are printed after
compilation. See Section 4.8.56 “--SUMMARY: Select Memory Summary
Output Type”.

© 2012 Microchip Technology Inc. DS52053B-page 121

MPLAB® XC8 C Compiler User’s Guide

494 Global Tab

The options in this dialog control aspects of compilation that are applicable throughout
code generation and link steps — the second stage of compilation. See Figure 4-8 in
conjunction with the following command line option equivalents.

FIGURE 4-8: THE GLOBAL TAB

Build Options For Project "5-10602_0100.mcp*

Directoriesl Custom Buildl Trace | DCiriver I Compilerl Lirker Global |

2]

i~ Code and data model
> Memary model ISmaII "I

> Size of Diouble

9 Size of Float |24 bit VI

L » [T Useshioteals

__’HAM ranges |

LU

Code pointer size |1E bt -—I <

External memory |/ ordwnte =

Instruction set | 'l
Frintf |I|\.!..; arily "l

ROk ranges |
r—

—Additional command-line options [link-time only]

A

H
o 60000

dhdd |

o |

Cancel Apply Helz

1. Memory model: Not applicable.

2. Double float: This selector allows the size of the doubl e type to be selected. See
Section 4.8.24 “--DOUBLE: Select Kind of Double Types”.

Float: This selector allows the size of the f | oat type to be selected. See

Section 4.8.31 “--FLOAT: Select Kind of Float Types”.

4. Use strict calls: Not applicable.
RAM ranges: This field allows the default RAM (data space) memory used to be

adjusted. See Section 4.8.48 “--RAM: Adjust RAM Ranges”.

6. Code pointer size: Not applicable.

DS52053B-page 122

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

7. External memory: This option affect the code generated when accessing the
external data interface on applicable PIC18 devices. See Section 4.8.26 “--EMI:
Select External Memory Interface Operating Mode”.

8. Instruction set: Not applicable.

9. Printf: Not applicable.

10. ROM ranges: This field allows the default ROM (program space) memory used
to be adjusted. See Section 4.8.49 “--ROM: Adjust ROM Ranges”.

11. Additional command-line options: Use this field to add in driver options in addi-
tion to those specified by the Build Options widgets. These options will only be
passed to the driver during the second compiler (code generation and link) pass,
see Section 4.3.2 “Single-Step Compilation”.

© 2012 Microchip Technology Inc. DS52053B-page 123

MPLAB® XC8 C Compiler User’s Guide

410 MPLAB X UNIVERSAL TOOLSUITE EQUIVALENTS

When compiling under the MPLAB X IDE, it is still the compiler’'s command-line driver
that is being executed and compiling the program. The MPLAB XC8 compiler plugins
controls the MPLAB X IDE Properties dialog that is used to access the compiler
options, however these graphical controls ultimately adjust the command-line options
passed to the command-line driver when compiling. You can see the command-line
options being used when building in MPLAB X IDE in the Output window.

The following dialogs and descriptions identify the mapping between the MPLAB X IDE
dialog controls and command-line options.

If you are using MPLAB IDE v8, see Section 4.9 “MPLAB IDE V8 Universal Tool-
suite Equivalents”.

4.10.1 Global Category

The panel in this category, shown in Figure 4-9, controls settings which apply to the
entire project.

FIGURE 4-9: GLOBAL OPTIONS
Categories:
9 Options for xc8 (v1.00)
< General
¥ @ Conf: [default] Option categories: | Memaory model 2 Reset
@ Simulator
@ Loading ize of Double 32 bit :
@ Libraries
o Building Size of Float 24 bit H
¥ = XC8 global options xternal memory (NJA)

@ XC8 compiler

RAM ranges éo

@ XCB8 linker
°—>ROM ranges

Additional options:

1. Size of Double: This selector allows the size of the doubl e type to be selected.
See Section 4.8.24 “--DOUBLE: Select Kind of Double Types”.

2. Size of Float: This selector allows the size of the f | oat type to be selected. See
Section 4.8.31 “--FLOAT: Select Kind of Float Types”.

3. External memory: This option allows specification of how external memory
access is performed. This only affects those devices which can access external
memory. See Section 4.8.26 “--EMI: Select External Memory Interface Oper-
ating Mode”.

4. RAM ranges: This field allows the default RAM (data space) memory used to be
adjusted. See Section 4.8.48 “--RAM: Adjust RAM Ranges”.

5. ROM ranges: This field allows the default ROM (program memory space) mem-
ory used to be adjusted. See Section 4.8.49 “--ROM: Adjust ROM Ranges”.

DS52053B-page 124

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.10.2 Compiler Category

The panels in this category control aspects of compilation of C source.

4.10.2.1 PREPROCESSING AND MESSAGES

These options relate to the C preprocessor and messages produced by the compiler
(see Section 4.6 “Compiler Messages” for more information).

See Figure 4-10 in conjunction with the following command-line option equivalents.

FIGURE 4-10: PREPROCESSING AND MESSAGES OPTIONS
Categories: Ooti ¢ 8 (v1.00)
> General ptions for xc8& (v1.
¥ @ Conf: [default] Option categories: | Preprocessingand m... % Reset
@ Simulator
© Loading o—>Define macros
@ Libraries
o Building Undefine macros
v o

XC8 global options
> XC8 compiler
@ XC8 linker

?

reprocess assembly files
Identifier length 31

nclude directories

2

Strict ANSI Conformance
Werbose [2]

Warning level

¢
66bé

(=]

Additional options:

1. Define macros: The buttons and fields grouped in the bracket can be used to
define preprocessor macros. See Section 4.8.2 “-D: Define Macro” .

2. Undefine macros: The buttons and fields grouped in the bracket can be used to
undefine preprocessor macros. See Section 4.8.14 “-U: Undefine a Macro”.

3. Preprocess assembly: This checkbox controls whether assembly source files are
scanned by the preprocessor. See Section 4.8.11 “-P: Preprocess Assembly
Files™.

4. Identifier length: This selector is currently not implemented. See
Section 4.8.9 “-N: Identifier Length”.

5. Include Directories: This selection uses the buttons and fields grouped in the
bracket to specify include (header) file search directories. See Section 4.8.5 “-I:
Include Search Path”.

6. Strict ANSI Conformance: This forces the compiler to reject any non-standard
keywords. See Section 4.8.55 “--STRICT: Strict ANSI Conformance”.

7. Verbose: This checkbox controls whether the full command-lines for the compiler
applications are displayed when building. See Section 4.8.15 “-V: Verbose
Compile”.

8. Warning level: This selector allows the warning level print threshold to be set.
See Section 4.8.59 “--WARN: Set Warning Level”.

© 2012 Microchip Technology Inc. DS52053B-page 125

MPLAB® XC8 C Compiler User’s Guide

4.10.2.2 OPTIMIZATION

These options, shown in Figure 4-11, relate to optimizations performed by the compiler,

1. Optimization controls: These controls adjust the optimizations employed by the
compiler. See Section 4.8.42 “--OPT: Invoke Compiler Optimizations”. Select
an optimizations set (- - OPT suboptions: al | or none), or any of the custom
options below (- - OPT suboptions: asm asnfi | e, speed/space and debug).

2. Address Qualifier: This selector allows the user to select the behavior of the
address qualifiers. See Section 4.8.16 “--ADDRQUAL: Set Compiler
Response to Memory Qualifiers”.

3. Operation Mode: This selector allows the user to force another available operat-
ing mode (f r ee, st d or pr 0) other than the default. See
Section 4.8.37 “--MODE: Choose Compiler Operating Mode”. The operating
mode will affect OCG-optimizations

FIGURE 4-11: OPTIMIZATIONS OPTIONS
Categories: Opti f 8 (v1.00)
e General ptions for xc8 (v1.
v @ Conf: [default Option categories: | Optimizations D Reset
@ Simulator
“ Loading ptimization set Custom =
@ Libraries
& Building Generated asembler code [E‘]
v & XC8 global options o Assembler files
° Speed
@ XC8 linker
ebug
Address qualifiers Ignore = 6—9
eé()peration mode FRO H
Additional options:
FIGURE 4-12: E COMPILER CATEGORY

DS52053B-page 126 © 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.10.3

Linker Category

The options in this dialog control the aspects of the second stage of compilation includ-

ing code generation and linking.

4.10.3.1 RUNTIME

All the widgets in Figure 4-13 correspond to suboptions of the - - RUNTI ME option, see
Section 4.8.50 “--RUNTIME: Specify Runtime Environment”. Respectively, these
map tothecl ear,init,keep,no_startup,osccal ,oscval ,resetbits,down-
| oad, st ackcal | ,confi g, clibandplib suboptions of the - - RUNTI ME option.

FIGURE 4-13: RUNTIME OPTIONS
Categories:
g Options for xc8& (v1.00)
@ General
¥ 2 Conf: [default] Option categories: Runtime B Reset
< Simulator
“ Loading Clear bss [2]
@ Libraries
> Building Initialize data]
¥ @ XC8 global options Keep generated startup.as
@ XCA campiler Link startup module in
2 XC8 linker
Calibrate oscilator)
Alternate oscillator calibration value
Backup reset condition flags
Format hex file for download)

Managed stack

Program the device with default c... (N /A)

Link in C Library)

Link in Peripheral Library (N A)

Additional options:

© 2012 Microchip Technology Inc.

DS52053B-page 127

MPLAB® XC8 C Compiler User’s Guide

4.10.3.2 REPORTING

These options, shown in Figure 4-14 relate to information produced during and after
compilation.

1. Display memory usage after compilation: These checkboxes allow you to specify
what information is displayed after compilation. The correspond to the psect ,
cl ass, memand hex suboptions to the - - SUMMARY option, see
Section 4.8.56 “--SUMMARY: Select Memory Summary Output Type”.

2. Create Summary File: Selecting this checkbox will send the information you have
selected above to a file as well as to the standard output. This corresponds to the
fil e suboption to the - - SUMMVARY option, see Section 4.8.56 “--SUMMARY:
Select Memory Summary Output Type”.

3. Create HTML files: This will create HTML files summarizing the previous build,
see Section 4.8.34 “--HTML: Generate HTML Diagnostic Files”.

FIGURE 4-14: REPORTING OPTIONS
Cateforti:eesn:eral Options for xc8 (v1.00)

¥ © Conf: [default]

Option categories: Reporting = Reset
2 Simulator
“ Loading Display psect usage
2 Libraries
> Building 0 Display class usage
¥ © XCB8 global options Display overall memory usage [2]
@ XC8 compiler .
Display HEX usage map
= XC8 linker
Create summary file ée
reate html files
Additional options:
FIGURE 4-15: ADDITIONAL OPTIONS
Categories: Opti P 8 (v1.00)
ions for xc8 (v1.
@ General P
¥ © Conf: [default] Option categories: | Additional options B Reset
@ Simulator
@ Loading °—>Fill
@ Libraries i
o Building Serial
¥ @ XC8 global options e—>Ccrdeoﬂset
@ XC8 compiler Checksum éo
= XC8 linker
e—>Errata (NJA)
Trace type (NJA) é-e

xtend address 0 in HEX file

?

Additional options:

DS52053B-page 128

© 2012 Microchip Technology Inc.

XC8 Command-line Driver

4.10.3.3 ADDITIONAL
These options, shown in Figure 4-15 relate to miscellaneous options.

1.

5.

6.

Fill: This field allows a fill value to be specified for unused memory locations, see
Section 4.8.30 “--FILL: Fill Unused Program Memory”.

Serial: This option allows you to specify a string which can be inserted into your
output HEX file. See Section 4.8.52 “--SERIAL: Store a Value At This Pro-
gram Memory Address”.

Codeoffset: This field allows an offset for the program to be specified, see
Section 4.8.22 " --CODEOFFSET: Offset Program Code to Address”.

Checksum: This field allows the checksum specification to be specified, see
Section 4.8.19 “--CHECKSUM: Calculate a Checksum™.

Errata: This allows customization of the errata workarounds applied by the
compiler, see Section 4.8.27 “--ERRATA: Specify Errata Workarounds”.

Trace type: Not yet implemented. Only native trace supported.

Extend address 0 in HEX file: This option specifies that the intel HEX file should have
initialization to zero of the upper address, see Section 4.8.44 “--OUTPUT= type:
Specify Output File Type”.

© 2012 Microchip Technology Inc. DS52053B-page 129

MPLAB® XC8 C Compiler User’s Guide

NOTES:

DS52053B-page 130 © 2012 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP USER'’S GUIDE

Chapter 5. C Language Features

5.1 INTRODUCTION

MPLAB XC8 C Compiler supports a number of special features and extensions to the
C language which are designed to ease the task of producing ROM-based applications
for 8-bit PIC devices. This chapter documents the special language features which are
specific to these devices.

* ANSI C Standard Issues

* Device-Related Features

« Supported Data Types and Variables

* Memory Allocation and Access

« Operators and Statements

¢ Register Usage

* Functions

* Interrupts

¢ Main, Runtime Startup and Reset

* Library Routines

* Mixing C and Assembly Code

¢ Optimizations

» Preprocessing

* Linking Programs

5.2 ANSI C STANDARD ISSUES

This compiler conforms to the ISO/IEC 9899:1990 Standard for programming lan-
guages. This is commonly called the C90 Standard. It is referred to as the ANSI C
Standard in this manual.

Some violations to the ANSI C Standard are indicated below in
Section 5.2.1 “Divergence from the ANSI C Standard”. Some features from the
later standard C99 are also supported.

5.2.1 Divergence from the ANSI C Standard

The C language implemented on MPLAB XC8 C Compiler diverges from the ANSI C
Standard in one area: function recursion. Due to limited memory and no hardware
implementation of a data stack, recursion is not supported and functions are not
reentrant.

The compiler can make functions called from main-line and interrupt code appear to be
reentrant via a duplication feature. See Section 5.9.5 “Function Duplication”.

5.2.2 Implementation-Defined behavior

Certain features of the ANSI C standard have implementation-defined behavior. This
means that the exact behavior of some C code can vary from compiler to compiler. The
exact behavior of the compiler is detailed throughout this manual, and is fully
summarized in Appendix C. “Implementation-Defined Behavior”.

© 2012 Microchip Technology Inc. DS52053B-page 131

MPLAB® XC8 C Compiler User’s Guide

5.2.3 Common Compiler Interface Standard

This compiler conforms to the Microchip XC compiler Common Compiler Interface
standard (CCI). This is a further refinement of the ANSI standard that attempts to stan-
dardize implementation-defined behavior and non-standard extensions across the
entire MPLAB XC compiler family.

If you choose to write code which conforms to this standard, a compiler option (see
Section 4.8.18 “--CCl: Enforce and Expect CCI Conformance”) should be enabled.
This will to indicate that the compiler should enforce conformance. Alternatively, you
may continue to write code using the non-standard ANSI extensions provided by the
compiler.

A separate document (pending at the time of this writing) describes the interface.

DS52053B-page 132 © 2012 Microchip Technology Inc.

C Language Features

5.3 DEVICE-RELATED FEATURES

MPLAB XC8 has several features which relate directly to the 8-bit PIC architectures
and instruction sets. These are detailed in the following sections.

53.1 Device Support

MPLAB XC8 C Compiler aims to support all 8-bit PIC devices. However, new devices
in these families are frequently released. There are several ways you can check if the
compiler you are using supports a particular device.

From MPLAB IDE (v8), open the Build Options dialog. Select the Driver tab. In the
Available Drivers field, select the compiler you wish to use. A list of all devices sup-
ported by that compiler will be shown in the Selected Driver Information and Supported
Device area, towards the center of the dialog. See Figure 5-1 for the relevant fields in
this dialog.

FIGURE 5-1: SHOWING SUPPORTED DEVICES

Build Options For Project "petit_16If.mcp™ e |

Directaries | Custom Build | Trace Driver lEompiIerI Linkerl Glnball

~dwvailable drivers

Compiler for PIC10/12/16 MCL [PRO Mode] W9.80
Compiler far PIC10/12/16 MCUz [PRO Mode] ¥9.71a
Compiler for FIC10A246 MCU s [PRO Mode) W3.70
Compiler far FIC10A12/416 MCUz [PRO Maode) 9. 70PL1

b e L bawve down Mwe totom | ¥ Show 1ELF1347 drivers only

b aove the diver you wizh to use ta the top of the llist

— Selected driver information and supported devices

Compiler for PIC10/1 216 MCUs (PRO Mode) 10F200 ﬂ
950 10F202
i - : 10F204
Serial number: HCPICP-00000 (PRO) 10F208
With Omniscient Code Generation™ 1853?
120505 =]

From the command line, the same information can be obtained. Run the compiler you
wish to use and pass it the option - - CHI PI NFO (See Section 4.8.21 “--CHIPINFO:
Display List of Supported Devices”). A list of all devices will be printed.

If you use the - V option in addition to the - - CHI PI NFO option, more detailed
information my be shown about each device.

You can also see the supported devices in your favorite web browser. Open the files
pi c_chi pi nfo. ht m for a list of all supported baseline or mid-range device, or

pi c18_chi pi nfo. ht n for all PIC18 devices. Both these files are located in the
DOCS directory under your compiler’s installation directory.

5.3.2 Instruction Set Support

The compiler support all instruction sets for PIC10/12/16 devices as well as the stan-
dard (legacy) PIC18 instruction set. The extended instruction mode available on some
PIC18 devices is not currently supported. Ensure you set the configuration bits to use
the PIC18 legacy instruction mode when appropriate.

© 2012 Microchip Technology Inc. DS52053B-page 133

MPLAB® XC8 C Compiler User’s Guide

5.3.3 Device Header Files

There is one header file that is typically included into each C source file you write. The
file is <xc. h> and is a generic header file that will include other device- and architec-
ture-specific header files when you build your project.

Inclusion of this file will allow access to SFRs via special variables, as well as macros
which allow special memory access or inclusion of special instructions, like CLRWDT.

Legacy projects may continue to use the <ht c. h> header file.
Avoid including chip-specific header files into your code as this will reduce portability.

The header files shipped with the compiler are specific to that compiler version. Future
compiler versions may ship with modified header files. If you copy compiler header files
into your project, particularly if you modify these files, be aware that they may not be
compatible with future versions of the compiler.

For information about assembly include files (. i nc), see
Section 5.12.3.2 “Accessing Registers from Assembly Code”.

534 Stack

The 8-bit PIC devices use what is referred to in this user’s guide as a hardware stack.
This stack is limited in depth and cannot be manipulated directly. It is only used for
function return addresses and cannot be used for program data.l The compiler
implements a compiled stack for aut o variables. See Section 5.5.2.2.1 “Compiled
Stack Operation” for information on how this is achieved.

You must ensure that the maximum hardware stack depth is not exceeded; otherwise,
code may fail. Nesting function calls too deeply will overflow the stack. It is important to
take into account implicitly called library functions and interrupts, which also use levels
of the stack. The compiler can be made to manage stack usage for some devices using
the st ackcal | suboption to the - - RUNTI ME compiler option, see

Section 4.8.50 “--RUNTIME: Specify Runtime Environment”. This enables an alter-
nate means of calling functions to prevent stack overflow.

A call graph is provided by the code generator in the assembler list file, see

Section 6.6.6 “Call Graph”. This will indicate the stack levels at each function call and
can be used as a guide to stack depth. The code generator may also produce warnings
if the maximum stack depth is exceeded.

Both of these are guides to stack usage. Optimizations and the use of interrupts can
decrease or increase the stack depth used by a program over that determined by the
compiler.

1.Microchip 16- and 32-bit devices allow the use of what is referred to in their respective user’s guides
as a software stack. This is the typical stack arrangement employed by most computers and is ordinary
data memory accessed by some sort of push and pop instructions, and a stack pointer register.

DS52053B-page 134 © 2012 Microchip Technology Inc.

C Language Features

5.35 Configuration Bit Access

The PIC devices have several locations which contain the configuration bits or fuses.
These bits specify fundamental device operation, such as the oscillator mode, watch-
dog timer, programming mode and code protection. Failure to correctly set these bits
may result in code failure, or a non-running device.

For PIC18 devices, these bits may be set using a configuration pragma. (Pragmas will
also be introduced for other 8-bit devices in future releases.) The pragma has the
following forms.

#pragma config setting = state|val ue

#pragma config register = value

where set t i ng is a configuration setting descriptor, e.g., WDT, and st at e is a textual
description of the desired state, e.g., OFF. The val ue field is a numerical value that can
be used in preference to a descriptor.

Consider the following PIC18-only examples.

#pragma config WOT = ON /1 turn on watchdog tiner
#pragma config WOT = 1 /1 an alternate form of the above
#pragma config WDTPS = Ox1A // specify the timer postscal e val ue

One pragma can be used to program several settings by separating each setting-value
pair with a comma. For example, the above could be specified with one pragma, as in
the following.

#pragma config WOT=ON, WDTPS = Ox1A

Rather than specify individual settings, the entire register may be programmed with one
numerical value, for example:

#pragma config CONFI GIL = Ox8F

The upper and lower half of each register must be programmed separately.

The settings and values associated with PIC18 devices can be determined from an
HTML guide. Open the file pi ¢18_chi pi nf o. ht M , which is located in the DOCS
directory of your compiler installation. Click on your target device and it will show you
the settings and values that are appropriate with this pragma. Check your device data
sheet for more information.

The configuration bits for baseline and mid-range devices can be set with the
___CONFI Gmacro which was supported in HI-TECH C, for example:

#i ncl ude <xc. h>

__CONFI GCWDTDI S & HS & UNPROTECT) ;

To use this macro, ensure you include <xc. h> in your source file. For devices that
have more than one configuration word, each subsequent invocation of _ CONFI ()
will modify the next configuration word in sequence. Typically this might look like:

#i ncl ude <xc. h>

__CONFIGWDTDI S & XT & UNPROTECT); // Programconfig. word 1

__ CONFI G FCVEN) ;

© 2012 Microchip Technology Inc. DS52053B-page 135

MPLAB® XC8 C Compiler User’s Guide

5.3.5.1 LEGACY SUPPORT FOR PIC18 DEVICES

You may continue to use the PIC18 configuration macros for legacy projects. The com-
piler supports the _ CONFI Gand __ PROG_CONFI Gmacros which allow configuration
bit symbols or a configuration word value, respectively, to be specified.

The __ CONFI Gmacro used for PIC18 devices takes an additional argument being the
number of the configuration word location. For example:

__CONFI(2, BW8 & PWRTDI S & WDTPS1 & WDTEN); // specify synbols
or you can specify a literal value if your prefer:
__PROG CONFI (1, OxFE57); /1 specify a literal constant val ue

You cannot use the setting symbols in the _ PROG_CONFI Gmacro, hor can you use a
literal value in the __ CONFI Gmacro.

The configuration locations do not need to be programmed in order.

Use the pragma in preference to the macros for new projects. To use these macros,
ensure you include <xc. h> in your source file. Symbols for the macros can be found
in the . cf gnap files contained in the dat / cf gnap directory of your compiler
installation.

5.3.5.2 CONFIGURATION CONSIDERATIONS

Neither the conf i g pragma nor the __ CONFI Gmacro produce executable code. They
should both be placed outside function definitions so as not to interfere with the
operation of the function’s code.

MPLAB IDE v8 has a dialog (Config>Configuration bits...) which also allows configura-
tion bits to be specified when the device is programmed. If the check box for “Configu-
ration Bits Set in Code” in this dialog is checked, any configuration bits specified in your
code using the _ CONFI Gmacro are ignored and those in the dialog used instead.
Ensure the source of the configuration bit settings is known when working with an
MPLAB IDE v8 project.

MPLAB X IDE does not allow the configuration bits to be adjusted. They must be spec-
ified in your source code using the pragma (or legacy macro).

All the bits in the configuration words should be programmed to prevent erratic program
behavior. Do not leave them in their default/lunprogrammed state. Not all configuration
bits have a default state of logic high; some have a logic low default state. Consult your
device data sheet for more information.

DS52053B-page 136

© 2012 Microchip Technology Inc.

C Language Features

5.3.6 Using SFRs From C Code

The Special Function Registers (SFRs) are registers which control aspects of the MCU
operation or that of peripheral modules on the device. Most of these registers are mem-
ory mapped, which means that they appear at, and can be accessed using, specific
addresses in the device’s data memory space. Individual bits within some registers
control independent features. Some registers are read-only; some are write-only. See
your device data sheet for more information.

Memory-mapped SFRs are accessed by special C variables that are placed at the
address of the register. (Variables that are placed at specific addresses are called
absolute variables and are described in Section 5.5.4 “Absolute Variables”.) These
variables can be accessed like any ordinary C variable so that no special syntax is
required to access SFRs.

The SFR variables are predefined in header files and are accessible once you have
included the <xc. h> header file (see Section 5.3.3 “Device Header Files”) into your
source code. Both bit variables and structures with bit-fields are defined, so you may
use either of them in your source code to access bits within a register.

The names given to the C variables that map over registers and bits within those reg-
isters are based on the names specified in the device data sheet. However, as there
can be duplication of some bit names within registers, there may be differences in the
nomenclature.

The names of the structures that hold the bit-fields will typically be those of the corre-
sponding register followed by bi t s. For example, the following shows code that
includes the generic header file, clears PORTA as a whole, sets bit 0 of PORTA using
a bit variable and sets bit 2 of PORTA using the structure/bit-field definitions.

#i ncl ude <xc. h>
voi d mai n(voi d)

{
PORTA = 0x00;
RAO = 1;
PORTAbi ts. RA2 = 1;
}

To confirm the names that are relevant for the device you are using, check the
device-specific header file that <xc. h> will include for the definitions of each variable.
These files will be located in the i ncl ude directory of the compiler and will have a
name that represents the device. There is a one-to-one correlation between device and
header file name that will be included by <xc. h>, e.g., when compiling for a
PIC16LF1826 device, <xc. h> will include the header file <pi c16l f 1826. h>.
Remember that you do not need to include this chip-specific file into your source code;
it is automatically included by <xc. h>.

Care should be taken when accessing some SFRs from C code or from assembly inline
with C code. Some registers are used by the compiler to hold intermediate values of
calculations, and writing to these registers directly can result in code failure. The com-
piler does not detect when SFRs have changed as a result of C or assembly code that
writes to them directly. The list of registers used by the compiler and further information
can be found in Section 5.7 “Register Usage”.

SFRs associated with peripherals are not used by the compiler to hold intermediate
results and can be changed as you require. Always ensure that you confirm the oper-
ation of peripheral modules from the device data sheet.

© 2012 Microchip Technology Inc. DS52053B-page 137

MPLAB® XC8 C Compiler User’s Guide

5.3.6.1 SPECIAL BASELINE/MID-RANGE REGISTER ISSUES

Some SFRs are not memory mapped, do not have a corresponding variable defined in
the device specific header file, and cannot be directly accessed from C code.

For example, the W register is not memory mapped on baseline devices. Some devices
use OPTION and TRIS registers, that are only accessible via special instructions and
that are also not memory mapped. See Section 5.3.9 “Baseline PIC MCU Special
Instructions” on how these registers are accessed by the compiler.

5.3.6.2 SPECIAL PIC18 REGISTER ISSUES

Some of the SFRs associated with the PIC18 can be grouped to form multi-byte values,
e.g., the TMRxH and TMRXL register combined form a 16-bit timer count value.
Depending on the device and mode of operation, there may be hardware requirements
to read these registers in certain ways, e.g., often the TMRXL register must be read
before trying to read the TMRXH register to obtain a valid 16-bit result.

Althoughitis possible to define a word-sized C variable to map over such registers, i.e.,
ani nt variable TMRx that maps over both TMRxL and TMRxH, the order in which the
compiler would read the bytes of such an object will vary from expression to expres-
sion. Some expressions require that the Most Significant Byte (MSB) is read first;
others start with the Least Significant Byte (LSB) first.

It is recommended that the existing SFR definitions in the chip header files be used.
Each byte of the SFR should be accessed directly, and in the required order, as dictated
by the device data sheet. This results in a much higher degree of portability.

The following code copies the two timer registers into a C unsi gned variable count
for subsequent use.

count = TMROL;

count += TMROH << 8;

Macros are also provided to perform reading and writing of the more common timer reg-
isters. See the macros READTI MERx and WRI TETI MERX in Appendix A. “Library
Functions”. These guarantee the correct byte order is used.

DS52053B-page 138

© 2012 Microchip Technology Inc.

C Language Features

5.3.7 ID Locations

The 8-bit PIC devices have locations outside the addressable memory area that can be
used for storing program information, such as an ID number. For PIC18 devices, the
confi g pragma is also used to place data into these locations by using a special
register name. The pragma is used as follows.

#pragma config | DLOCx = val ue

where x is the number (position) of the ID location, and val ue is the nibble or byte
which is to be positioned into that ID location. If val ue is larger than the maximum
value allowable for each location on the target device, the value will be truncated and
a warning message issued. The size of each ID location varies from device to device.
See your device data sheet for more information.

For example:
#pragma config IDLOCO = 1
#pragma config IDLOCL = 4

will attempt fill the first two ID locations with 1 and 4. One pragma can be used to pro-
gram several locations by separating each register-value pair with a comma. For
example, the above could also be specified as shown below.

#pragma config IDLOCO = 1, IDLOCL = 4
The config pragma does not produce executable code and so should ideally be placed
outside function definitions.

The compiler also has legacy support for the __ | DLOC macro. This macro must be
used for baseline and mid-range devices. The macro is used in a manner similar to:
#i ncl ude <xc. h>

__1DLOC(x) ;

where x is a list of nibbles which are positioned into the ID locations. Only the lower
four bits of each ID location is programmed, so the following:

I DLOC(15F0) ;
will attempt to fill ID locations with the values: 1, 5, F and 0.
To use this macro, ensure you include <xc. h> in your source file.

The __| DLOC macro does not produce executable code and so should ideally be
placed outside function definitions.

Some devices permit programming up to seven bits within each ID location. The
__1'DLOC() macro is not suitable for such devices and the __ 1 DLOC7(a, b, c, d)
macro should be used instead. The parameters a to d are the values to be pro-
grammed. The values can be entered in either decimal or hexadecimal format, such as:

__IbLocr(ox7f, 1, 70, Ox5a) ;

It is not appropriate to use the __| DLOC7() macro on a device that does not permit
seven-bit programming of ID locations.

© 2012 Microchip Technology Inc. DS52053B-page 139

MPLAB® XC8 C Compiler User’s Guide

5.3.8 Bit Instructions

Wherever possible, the MPLAB XC8 C Compiler will attempt to use bit instructions,
even on non-bitinteger values. For example, when using a bitwise operator and a mask
to alter a bit within an integral type, the compiler will check the mask value to determine
if a bit instruction can achieve the same functionality.

unsi gned int foo;

foo | = 0x40;

will produce the instruction:

BSF foo,6

To set or clear individual bits within integral type, the following macros could be used:
#define bitset(var, bitno) ((var) |= 1UL << (bitno))

#define bitclr(var, bitno) ((var) &= ~(1UL << (bitno)))

To perform the same operation on f 00 as above, the bi t set macro could be
employed as follows:

bitset(foo, 6);

5.3.9 Baseline PIC MCU Special Instructions

The Baseline devices have some registers which are not in the normal SFR space and
cannot be accessed using an ordinary file instruction. These are the OPTION and TRIS
registers.

Both registers are write-only and cannot be used in expression that read their value.
They can only be accessed using special instructions which the compiler will use
automatically.

The definition of the variables that map to these registers make use of the cont r ol
qualifier. This qualifier informs the compiler that the registers are outside of the normal
address space and that a different access method is required. You should not use this
qualifiers for any other registers.

When you write to either of these SFR variables, the compiler will use the appropriate
instruction to load the value. So, for example, to load the TRIS register, the following
code:

TRI S = OxFF;

may be encoded by the compiler as:

MOVLW Of f h
TRI'S

Those PIC devices which have more than one output port may have definitions for
objects: TRI SA, TRI SBand TRI SC, depending on the exact number of ports available.
This objects are used in the same manner as described above.

DS52053B-page 140 © 2012 Microchip Technology Inc.

C Language Features

5.3.9.1 OSCILLATOR CALIBRATION CONSTANTS

Some Baseline and Mid-range devices come with an oscillator calibration constant
which is pre-programmed into the device’s program memory. This constant can be read
from program memory and written to the OSCCAL register to calibrate the internal RC
oscillator.

On some Baseline PIC devices, the calibration constant is stored as a MOVLWinstruc-
tion at the top of program memory, e.g. the PIC10F509 device. On Reset, the program
counter is made to point to this instruction and it is executed first before the program
counter wraps around to 0x0000, which is the effective Reset vector for the device. The
default runtime startup routine (see Section 5.10.1 “Runtime Startup Code”) will
automatically include code to load the OSCCAL register with the value contained in
WREG after Reset on such devices. No other code is required.

For other chips, such as the 12F629 device, the oscillator constant is also stored at the
top of program memory, but as a RETLWinstruction. The compiler’s startup code will
automatically generate code to retrieve this value and do the configuration.

For other chips, such as PIC12F629 device, the oscillator constant is also stored at the
top of program memory, but as a RETLWinstruction. The compiler’s startup code will
automatically generate code to retrieve this value and perform the configuration.

At runtime, the calibration value stored as a RETLWinstruction may be read using the
‘function’ __osccal _val () ,as a label is assigned the RETLWinstruction address. A
prototype for the function is provided in <xc. h>. For example:

cal Val = __osccal _val ();
Loading of the calibration value can be turned off via the osccal suboption to the

- - RUNTI ME option (see Section 4.8.50 “--RUNTIME: Specify Runtime Environ-
ment”).

At runtime, this calibration value may be read using the macro

_READ _OSCCAL_DATA() . To be able to use this macro, make sure that <xc. h> is
included into the relevant modules of your program. This macro returns the calibration
constant which can then be stored into the OSCCAL register, as follows:

OSCCAL = _READ OSCCAL_DATA();

Note: The location which stores the calibration constant is never code protected
and will be lost if you reprogram the device. Thus, if you are using a win-
dowed or Flash device, the calibration constant must be saved from the last
ROM location before itis erased. The constant must then be reprogrammed
at the same location along with the new program and data.

If you are using an in-circuit emulator (ICE), the location used by the cali-
bration RETLW instruction may not be programmed. Calling the
_READ_OSCCAL_DATA() macro will not work and will almost certainly not
return correctly. If you wish to test code that includes this macro on an ICE,
you will have to program a RETLWinstruction at the appropriate location in
program memory. Remember to remove this instruction when programming
the actual part so you do not destroy the calibration value.

© 2012 Microchip Technology Inc. DS52053B-page 141

MPLAB® XC8 C Compiler User’s Guide

5.3.10 REAL ICE Support

The compiler supports log and trace functions (instrumented trace) when using Micro-
chip’s REAL ICE debugger. See the REAL ICE documentation for more information on
the instrumented trace features.

Only native trace is currently supported by the compiler. Not all devices support instru-
mented trace, and the IDE you are using also needs to have instrumented trace sup-
port for your target device, as well.

The log and trace macro calls need to be added by hand to your source code in MPLAB
IDE. They have the following form.

_ TRACE(i d);

__LOEid, expression);

MPLAB IDE v8 will automatically substitute an appropriate value for i d when you com-
pile; however, you may specify these by hand if required. The trace i d should be a
constant in the range of 0x40 to 0x7f, and the log i d is a constant in the range of 0x0
to Ox7f. Each macro should be given a unique number so that it can be properly iden-
tified. The same valid number can be used for both trace and log macros.

The expr essi on can be any integer or 32-bit floating point expression. Typically, this
expression is simply a variable name so the variable’s contents are logged.

Macros should be placed in the C source code at the desired locations. They will trigger
information to be sent to the debugger and IDE when they are executed. Adding trace
and log macros will increase the size of your code as they contribute to the program
image that is downloaded to the device.

Here is an example of these macros that you might add.

i npStatus = readUser();
if(inpStatus == 0) {
_ TRACE(i d);
recovery();

}
_Logid, inpStatus);

DS52053B-page 142

© 2012 Microchip Technology Inc.

C Language Features

5.4 SUPPORTED DATA TYPES AND VARIABLES

541 Identifiers

A C variable identifier (the following is also true for function identifiers) is a sequence
of letters and digits, where the underscore character “_" counts as a letter. Identifiers
cannot start with a digit. Although they may start with an underscore, such identifiers
are reserved for the compiler’s use and should not be defined by your programs. Such
is not the case for assembly domain identifiers, which often begin with an underscore,

see Section 5.12.3.1 “Equivalent Assembly Symbols”.
Identifiers are case sensitive, so nai n is different to Mai n.

Not every character is significant in an identifier. The maximum number of significant
characters can be set using an option, see Section 4.8.9 “-N: Identifier Length”. If

two identifiers differ only after the maximum number of significant characters, then the
compiler will consider them to be the same symbol.

5.4.2 Integer Data Types

The MPLAB XC8 compiler supports integer data types with 1, 2, 3 and 4 byte sizes as
well as a single bit type. Table 5-1 shows the data types and their corresponding size
and arithmetic type. The default type for each type is underlined.

TABLE 5-1: INTEGER DATA TYPES

Type Size (bits) Arithmetic Type
bi t 1 Unsigned integer
signed char 8 Signed integer
unsi gned char 8 Unsigned integer
si gned short 16 Signed integer
unsi gned short 16 Unsigned integer
signed int 16 Signed integer
unsi gned i nt 16 Unsigned integer
si gned short |ong 24 Signed integer
unsi gned short |ong 24 Unsigned integer
si gned | ong 32 Signed integer
unsi gned | ong 32 Unsigned integer
signed | ong | ong 32 Signed integer
unsi gned | ong | ong 32 Unsigned integer

The bit and short | ong types are non-standard types available in this implementa-
tion. The | ong | ong types are C99 Standard types.

All integer values are represented in little endian format with the Least Significant bit
(LSb) at the lower address.

If no signedness is specified in the type, then the type will be si gned except for the
char types which are always unsi gned. The bi t type is always unsigned and the
concept of a signed bit is meaningless.

© 2012 Microchip Technology Inc. DS52053B-page 143

MPLAB® XC8 C Compiler User’s Guide

Signed values are stored as a two’s complement integer value.

The range of values capable of being held by these types is summarized in Table 5-2
The symbols in this table are preprocessor macros which are available after including
<limts.h>inyour source code. As the size of data types are not fully specified by
the ANSI Standard, these macros allow for more portable code which can check the
limits of the range of values held by the type on this implementation.

The macros associated with the short | ong type are non-standard macros available
in this implementation; those associated with the | ong | ong types are defined by the

C99 Standard.

TABLE 5-2: RANGES OF INTEGER TYPE VALUES

Symbol Meaning Value
CHAR BI T Bits per char 8
CHAR_MAX Max. value of a char 127
CHAR M N Min. value of a char -128
SCHAR_MAX Max. value of a si gned char 127
SCHAR_ M N Min. value of a si gned char -128
UCHAR_MAX Max. value of an unsi gned char 255
SHRT_VAX Max. value of a shor t 32767
SHRT_M N Min. value of a short -32768
USHRT_MAX Max. value of an unsi gned short 65535
I NT_NAX Max. value of an i nt 32767
INT_M N Min. value of ai nt -32768
Ul NT_MAX Max. value of an unsi gned i nt 65535
SHRTLONG_MAX Max. value of ashort | ong 8388607
SHRTLONG_M N Min. value of ashort | ong -8388608
USHRTLONG_MAX Max. value of an unsi gned short | ong|16777215
LONG_MAX Max. value of a | ong 2147483647
LONG_ M N Min. value of a | ong -2147483648
ULONG_NMAX Max. value of an unsi gned | ong 4294967295
LLONG_MAX Max. value of al ong | ong 2147483647
LLONG_ M N Min. value of al ong | ong -2147483648
ULLONG_MAX Max. value of an unsi gned | ong | ong |4294967295

Macros are also available in <st di nt . h> which define values associated with
fixed-width types.

When specifying a si gned orunsi gned short int,short long int,long int
orl ong | ong int type, the keyword i nt may be omitted. Thus a variable declared
as short will contain asi gned short int and a variable declared as unsi gned
short will contain an unsi gned short int.

Itis a common misconception that the C char types are intended purely for ASCII char-
acter manipulation. However, the C language makes no guarantee that the default
character representation is even ASCII. (This implementation does use ASCII as the
character representation.) The char types are the smallest of the multi-bit integer
sizes, and behave in all respects like integers. The reason for the name “char” is his-
torical and does not mean that char can only be used to represent characters. It is pos-
sible to freely mix char values with values of other types in C expressions. With the
MPLAB XC8 C Compiler, the char types are used for a number of purposes — as 8-bit
integers, as storage for ASCII characters, and for access to 1/O locations.

DS52053B-page 144

© 2012 Microchip Technology Inc.

C Language Features

5.4.2.1 BIT DATA TYPES AND VARIABLES

The MPLAB XC8 C Compiler supports bi t integral types which can hold the values 0
or 1. Single bi t variables may be declared using the keyword bi t , for example:

bit init_flag;

These variables cannot be aut o or parameters to a function, but can be qualified
st ati c, allowing them to be defined locally within a function. For example:

int func(void) {
static bit flanme_on;
/1

}

A function may return a bi t object by using the bi t keyword in the function’s prototype
in the usual way. The 1 or 0 value will be returned in the carry flag in the STATUS reg-
ister.

The bi t variables behave in most respects like normal unsi gned char variables, but
they may only contain the values 0 and 1, and therefore provide a convenient and effi-
cient method of storing flags. Eight bit objects are packed into each byte of memory
storage, so they don’t consume large amounts of internal RAM.

Operations on bi t objects are performed using the single bit instructions (bsf and
bcf) wherever possible, thus the generated code to access bi t objects is very effi-
cient.

Itis not possible to declare a pointer to bi t types or assign the address of a bi t object
to any pointer. Nor is it possible to statically initialize bi t variables so they must be
assigned any non-zero starting value (i.e., 1) in the code itself. Bit objects will be
cleared on startup, unless the bit is qualified per si st ent .

When assigning a larger integral type to a bi t variable, only the LSb is used. For
example, if the bi t variable bi t var was assigned as in the following:

int data = 0x54;
bit bitvar;
bitvar = data;

it will be cleared by the assignment since the LSb of dat a is zero. This sets the bi t
type apart from the C99 Standard __Bool , which is a boolean type, not a 1-bit wide
integer. The __Bool type is not supported on the MPLAB XC8 compiler. If you want to
set a bit variable to be 0 or 1 depending on whether the larger integral type is zero
(false) or non-zero (true), use the form:

bitvar = (data !'= 0);
The psects in which bi t objects are allocated storage are declared using the bi t
PSECT directive flag, see Section 6.4.9.3 “PSECT". All addresses specified for bit

objects and psects will be bit addresses. Take care when comparing these addresses
to byte addresses used by all other variables.

If the xc8 flag - - STRI CT is used, the bi t keyword becomes unavailable.

© 2012 Microchip Technology Inc. DS52053B-page 145

MPLAB® XC8 C Compiler User’s Guide

5.4.3 Floating-Point Data Types

The MPLAB XC8 compiler supports 24- and 32-bit floating-point types. Floating point
is implemented using either a IEEE 754 32-bit format, or a modified (truncated) 24-bit
form of this. Table 5-3 shows the data types and their corresponding size and arithmetic

type.
TABLE 5-3: FLOATING-POINT DATA TYPES

Type Size (bits) Arithmetic Type
f | oat 24 or 32 Real
doubl e 24 or 32 Real
| ong doubl e same as doubl e Real

For both f | oat and doubl e values, the 24-bit format is the default. The options

- - FLOAT=24 and - - DOUBLE=24 can also be used to specify this explicitly. The 32-bit
format is used for doubl e values if the - - DOUBLE=32 option is used and for f | oat
values if - - FLOAT=32 is used.

Variables may be declared using the f | oat and doubl e keywords, respectively, to
hold values of these types. Floating-point types are always signed and the unsi gned
keyword is illegal when specifying a floating-point type. Types declared as | ong dou-
bl e will use the same format as types declared as doubl e. All floating-point values
are represented in little endian format with the LSb at the lower address.

This format is described in Table 5-4, where:

* Sign is the sign bit which indicates if the number is positive or negative

* The exponent is 8 bits which is stored as excess 127 (i.e., an exponent of O is
stored as 127).

» Mantissa is the mantissa, which is to the right of the radix point. There is an
implied bit to the left of the radix point which is always 1 except for a zero value,
where the implied bit is zero. A zero value is indicated by a zero exponent.

The value of this number is (-1)519" x 2(&xPonent-127) y 1 ‘mantissa.

TABLE 5-4: FLOATING-POINT FORMATS

Format Sign Biased exponent Mantissa
IEEE 754 32-bit X XXXX XXXX XXX XXXX XXXX XXXX XXXX XXXX
modified IEEE 754 X XXXX XXXX XXX XXXX XXXX XXXX
24-bit

DS52053B-page 146

© 2012 Microchip Technology Inc.

C Language Features

Here are some examples of the IEEE 754 32-bit formats shown in Table 5-5. Note that
the Most Significant Bit (MSb) of the mantissa column (i.e., the bit to the left of the radix
point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which
case the float is zero).

TABLE 5-5: FLOATING-POINT FORMAT EXAMPLE IEEE 754

Format Number Biased exponent 1l.mantissa Decimal
32-bit 7DA6B69Bh | 11111011b 1.0100110101101101 |2.77000e+37
0011011b
(251) (1.302447676659) —
24-bit 42123Ah 10000100b 1.001001000111010b |36.557
(132) (1.142395019531) —

Use the following process to manually calculate the 32-bit example in Table 5-5.

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take
the binary number to the right of the decimal point in the mantissa. Convert this to dec-
imal and divide it by 223 where 23 is the number of bits taken up by the mantissa, to
give 0.302447676659. Add 1 to this fraction. The floating-point number is then given
by:

-19x212441.302447676659

which becomes:

1x2.126764793256e+37x1.302447676659

which is approximately equal to:

2.77000e+37

Binary floating-point values are sometimes misunderstood. It is important to remember
that not every floating-point value can be represented by a finite sized floating-point
number. The size of the exponent in the number dictates the range of values that the
number can hold, and the size of the mantissa relates to the spacing of each value that
can be represented exactly. Thus the 24-bit format allows for values with approximately
the same range of values representable by the 32-bit format, but the values that can be
exactly represented by this format are more widely spaced.

So, for example, if you are using a 24-bit wide floating-point type, it can exactly store
the value 95000.0. However, the next highest number it can represent is 95002.0 and
it is impossible to represent any value in between these two in such a type as it will be
rounded. This implies that C code which compares floating-point type may not behave
as expected. For example:

vol atile float nyFloat;

nyFl oat = 95002. 0;

i f(nmyFl oat == 95001. 0) /1 value will be rounded
PORTA++; /] this line will be executed!

in which the result of the i f () expression will be true, even though it appears the two
values being compared are different.

Compare this to a 32-bit floating-point type, which has a higher precision. It also can
exactly store 95000.0 as a value. The next highest value which can be represented is
(approximately) 95000.00781.

The characteristics of the floating-point formats are summarized in Table 5-6. The sym-
bols in this table are preprocessor macros which are available after including
<f | oat . h>in your source code.

© 2012 Microchip Technology Inc. DS52053B-page 147

MPLAB® XC8 C Compiler User’s Guide

Two sets of macros are available for f | oat and doubl e types, where XXX represents
FLT and DBL, respectively. So, for example, FLT_MAX represents the maximum float-
ing-point value of the f | oat type. It can have two values depending on whether f | oat
is a 24 or 32 bit wide format. DBL_ MAX represents the same values for the doubl e

type.

As the size and format of floating-point data types are not fully specified by the ANSI
Standard, these macros allow for more portable code which can check the limits of the
range of values held by the type on this implementation.

TABLE 5-6: RANGES OF FLOATING-POINT TYPE VALUES

Symbol Meaning 24-bit Value 32-bit Value
XXX_RADI X Radix of exponent representation | 2 2
XXX_ROUNDS Rounding mode for addition 0 0
XXX_M N_EXP Min. n such that FLT_RADIX"1is |-125 -125
a normalized float value

XXX_M N_10_EXP | Min. n such that 10" is a -37 -37
normalized float value

XXX_NVAX_EXP Max. n such that FLT_RADIX"™1 |128 128
is a normalized float value

XXX_MAX_10_EXP | Max. n such that 10" is a 38 38
normalized float value

XXX_NMANT_DI G Number of FLT_RADIX mantissa |16 24
digits

XXX_EPSI LON The smallest number which 3.05176e-05 1.19209e-07
added to 1.0 does not yield 1.0

DS52053B-page 148 © 2012 Microchip Technology Inc.

C Language Features

54.4 Structures and Unions

MPLAB XC8 C Compiler supports st ruct and uni on types. Structures and unions
only differ in the memory offset applied to each member.

These types will be at least 1 byte wide. The members of structures and unions may
not be objects of type bi t, but bit-fields are fully supported.

Structures and unions may be passed freely as function arguments and function return
values. Pointers to structures and unions are fully supported.

5441 STRUCTURE AND UNION QUALIFIERS

The compiler supports the use of type qualifiers on structures. When a qualifier is
applied to a structure, all of its members will inherit this qualification. In the following
example the structure is qualified const .

const struct {

int nunber;

int *ptr;
} record = { 0x55, & };
In this case, the entire structure will be placed into the program space and each mem-
ber will be read-only. Remember that all members are usually initialized if a structure
is const as they cannot be initialized at runtime.

If the members of the structure were individually qualified const , but the structure was
not, then the structure would be positioned into RAM, but each member would be
read-only. Compare the following structure with the above.

struct {
const int numnber;
int * const ptr;
} record = { Ox55, & };

© 2012 Microchip Technology Inc. DS52053B-page 149

MPLAB® XC8 C Compiler User’s Guide

5442 BIT-FIELDS IN STRUCTURES

MPLAB XC8 C Compiler fully supports bit-fields in structures.

Bit-fields are always allocated within 8-bit words, even though it is usual to use the type
unsi gned i nt in the definition.

The first bit defined will be the LSb of the word in which it will be stored. When a bit-field
is declared, it is allocated within the current 8-bit unit if it will fit; otherwise, a new byte
is allocated within the structure. Bit-fields can never cross the boundary between 8-bit
allocation units. For example, the declaration:

struct {
unsi gned lo : 1;
unsi gned dunmy : 6;
unsi gned hi @ 1;

} foo;

will produce a structure occupying 1 byte. If f oo was ultimately linked at address 10H,
the field | o will be bit O of address 10H; hi will be bit 7 of address 10H. The LSb of
dummy will be bit 1 of address 10H and the MSb of durmy will be bit 6 of address 10h.

Unnamed bit-fields may be declared to pad out unused space between active bits in
control registers. For example, if dunmy is never referenced, the structure above could
have been declared as:

struct {
unsi gned lo : 1;
unsi gned T 6;
unsi gned hi @ 1;
} foo;

A structure with bit-fields may be initialized by supplying a comma-separated list of
initial values for each field. For example:

struct {
unsi gned lo : 1;
unsi gned md: 6;
unsi gned hi 1

} foo = {1, 8, 0};

Structures with unnamed bit-fields may be initialized. No initial value should be supplied
for the unnamed members, for example:

struct {
unsi gned lo : 1;
unsi gned . 6;
unsi gned hi @ 1;

} foo = {1, 0};
will initialize the members | o and hi correctly.

A bit-field that has a size of 0 is a special case. The Standard indicates that no further
bit-field is to be packed into the allocation unit in which the previous bit-field, if any, was
placed.

DS52053B-page 150 © 2012 Microchip Technology Inc.

C Language Features

The MPLAB XC8 compiler supports anonymous unions. These are unions with no
identifier and whose members can be accessed without referencing the enclosing
union. These unions can be used when placing inside structures. For example:

struct {
uni on {
int x;
doubl e y;
}s

} aaa;

voi d mai n(voi d)
{
aaa.x = 99
[-

Here, the union is not named and its members accessed as if they are part of the struc-
ture. Anonymous unions are not part of any C Standard and so their use limits the
portability of any code.

© 2012 Microchip Technology Inc. DS52053B-page 151

MPLAB® XC8 C Compiler User’s Guide

545 Pointer Types

There are two basic pointer types supported by the MPLAB XC8 C Compiler: data
pointers and function pointers. Data pointers hold the addresses of variables which can
be indirectly read, and possible indirectly written, by the program. Function pointers
hold the address of an executable function which can be called indirectly via the pointer.

To conserve memory requirements and reduce execution time, pointers are made dif-
ferent sizes and formats. The MPLAB XC8 C Compiler uses sophisticated algorithms
to track the assignment of addresses to all pointers, and, as a result, non-standard
qualifiers are not required when defining pointer variables. The standard qualifiers
const andvol ati | e can still be used and have their usual meaning. Despite this, the
size of each pointer is optimal for its intended usage in the program.

5451 COMBINING TYPE QUALIFIERS AND POINTERS

It is helpful to first review the ANSI C standard conventions for definitions of pointer
types.

Pointers can be qualified like any other C object, but care must be taken when doing
S0 as there are two quantities associated with pointers. The first is the actual pointer
itself, which is treated like any ordinary C variable and has memory reserved for it. The
second is the target, or targets, that the pointer references, or to which the pointer
points. The general form of a pointer definition looks like the following:

target _type_& qualifiers * pointer’s_qualifiers pointer’s_nane;

Any qualifiers to the right of the * (i.e., next to the pointer’s name) relate to the pointer
variable itself. The type and any qualifiers to the left of the * relate to the pointer’s tar-
gets. This makes sense since it is also the * operator that dereferences a pointer, which
allows you to get from the pointer variable to its current target.

Here are three examples of pointer definitions using the vol at i | e qualifier. The fields
in the definitions have been highlighted with spacing:

volatile int * vip ;

int * volatile ivp ;

volatile int * volatile vivp ;

The first example is a pointer called vi p. It contains the address of i nt objects that
are qualified vol at i | e. The pointer itself — the variable that holds the address — is
not vol ati | e; however, the objects that are accessed when the pointer is derefer-
enced are treated as being vol ati | e. In other words, the target objects accessible via
the pointer may be externally modified.

The second example is a pointer called i vp which also contains the address of i nt
objects. In this example, the pointer itself is vol at i | e, that is, the address the pointer
contains may be externally modified; however, the objects that can be accessed when
dereferencing the pointer are not vol ati | e.

The last example is of a pointer called vi vp which is itself qualified vol ati | e, and
which also holds the address of vol ati | e objects.

Bear in mind that one pointer can be assigned the addresses of many objects; for
example, a pointer that is a parameter to a function is assigned a new object address
every time the function is called. The definition of the pointer must be valid for every
target address assigned.

Note: Care must be taken when describing pointers. Is a “const pointer” a pointer
that points to const objects, or a pointer that is const itself? You can talk
about “pointers to const” and “const pointers” to help clarify the definition,
but such terms may not be universally understood.

DS52053B-page 152

© 2012 Microchip Technology Inc.

C Language Features

5.45.2 DATA POINTERS

The MPLAB XC8 compiler monitors and records all assignments of addresses to each
data pointer the program contains. This includes assignment of the addresses of
objects to pointers; assignment of one pointer to another; initialization of pointers when
they are defined; and takes into account when pointers are ordinary variables and func-
tion parameters, and when pointers are used to access basic objects, or structures or
arrays.

The size and format of the address held by each pointer is based on this information.
When more than one address is assigned to a pointer at different places in the code, a
set of all possible targets the pointer can address is maintained. This information is spe-
cific to each pointer defined in the program, thus two pointers with the same C type may
hold addresses of different sizes and formats due to the way the pointers were used in
the program.

The compiler tracks the memory location of all targets, as well as the size of all targets
to determine the size and scope of a pointer. The size of a target is important as well,
particularly with arrays or structures. It must be possible to increment a pointer so it can
access all the elements of an array, for example.

There are several pointer classifications used with the MPLAB XC8 C Compiler, such
as those indicated below.

For baseline and mid-range devices:

< An 8-bit pointer capable of accessing common memory and two consecutive
banks, e.g., banks 0 and 1, or banks 7 and 8, etc.

« A 16-bit pointer capable of accessing the entire data memory space

« An 8-bit pointer capable of accessing up to 256 bytes of program space data

« A 16-bit pointer capable of accessing up to 64 kbytes of program space data

A 16-bit mixed target space pointer capable of accessing the entire data space

memory and up to 64 kbytes of program space data

For PIC18 devices:

« An 8-bit pointer capable of accessing the access bank

« A 16-bit pointer capable of accessing the entire data memory space

< An 8-bit pointer capable of accessing up to 256 bytes of program space data

« A 16-bit pointer capable of accessing up to 64 kbytes of program space data

« A 24-bit pointer capable of accessing the entire program space

« A 16-bit mixed target space pointer capable of accessing the entire data space
memory and up to 64 kbytes of program space data

A 24-bit mixed target space pointer capable of accessing the entire data space
memory and the entire program space

Each data pointer will be allocated one of the available classifications after preliminary
scans of the source code. There is no mechanism by which the programmer can spec-
ify the style of pointer required (other than by the assignments to the pointer). The C
code must convey the required information to the compiler.

© 2012 Microchip Technology Inc. DS52053B-page 153

MPLAB® XC8 C Compiler User’s Guide

Information about the pointers and their targets are shown in the pointer reference
graph, which is described in Section 6.6.5 “Pointer Reference Graph”. This graph is
printed in the assembly list file, which is controlled by the option described in

Section 4.8.17 “--ASMLIST: Generate Assembler List Files”.

Consider the following mid-range device program in the early stages of development.
It consists of the following code:

int i, j;

int getValue(const int * ip) {
return *ip;

}

voi d mai n(void) {
j = getValue(&);
/1 ... code that uses j

}

A pointer, i p, is a parameter to the function get Val ue() . The pointer target type uses
the qualifier const because we do not want the pointer to be used to write to any
objects whose addresses are passed to the function. The const qualification serves
no other purpose and does not alter the format of the pointer variable.

If the compiler allocates the variable i (defined in mai n()) to bank 0 data memory, it
will also be noted that the pointer i p (parameter to get Val ue()) only points to one

object that resides in bank 0 of the data memory. In this case, the pointer, i p, is made
an 8-bit wide data pointer. The generated code that dereferences i p in get Val ue()
will be generated assuming that the address can only be to an object in bank 0.

As the program is developed, another variable, x, is defined and (unknown to the pro-
grammer) is allocated space in bank 2 data memory. The mai n() function now looks
like:

int i, j; // allocated to bank O in this exanple

int x; /] allocated to bank 2 in this exanple

int getValue(const int * ip) {
return *ip;

}

void mai n(void) {
= getVal ue(&);

i

/1 ... code that uses j
j = getVal ue(&x);

/1 ... code that uses j

}

The pointer, i p, now has targets that are in bank 0 and in bank 2.To be able to accom-
modate this situation, the pointer is made 16 bits wide, and the code used to derefer-
ence the pointer will change accordingly. This takes place without any modification to
the source code.

One positive aspect of tracking pointer targets is less of a dependence on pointer qual-
ifiers. The standard qualifiers const and vol at i | e must still be used in pointer defi-
nitions to indicate a read-only or externally-modifiable target object, respectively.
However, this is in strict accordance with the ANSI C standard. Non-standard qualifiers,
like near and bank?2, are not required to indicate pointer targets, have no effect, and
should be avoided. Omitting these qualifiers will result in more portable and readable
code, and reduce the chance of extraneous warnings being issued by the compiler.

DS52053B-page 154

© 2012 Microchip Technology Inc.

C Language Features

5.4.5.2.1 Pointers to Both Memory Spaces

When a pointer is assigned the address of one or more objects that have been allo-
cated memory in the data space, and also assigned the address of one or more const
objects, the pointer will fall into one of the mixed target space pointers listed in
Section 5.4.5.2 “Data Pointers”, and the address will be encoded so that the target
memory space can be determined at runtime. The encoding of these pointer types are
as follows.

For the Baseline/Mid-range 16-bit mixed target space pointer, the MSb of the address
(i.e., bit number 15) indicates the memaory space that the address references. If this bit
is set, it indicates that the address is of something in program memory; clear indicates
an object in the data memory. The remainder of this address represents the full address
in the indicated memory space.

For the PIC18 16-bit mixed target space pointer, any address above the highest data
space address is that of an object in the program space memory; otherwise, the
address is of a data space memory object.

For the PIC18 24-bit mixed target space pointer, bit number 21 indicates the memory
space that the address references. If this bit is set, it indicates that the address is of an
object residing in data memory; if it is clear, it indicates an object in the program mem-
ory. The remainder of this address represents the full address in the indicated memory
space. Note that for efficiency reasons, the meaning of the memory space bit is the
opposite to that for baseline and mid-range devices.

To extend the mid-range device example given in Section 5.4.5.2 “Data Pointers”,
the code is now developed further. The function get Val ue() is now called with the
address of an object that resides in the program memory, as shown.

int i, j; // allocated to bank 0 in this exanple
int x; /] allocated to bank 2 in this exanple
const int type = 0x3456;

int getValue(const int * ip) {

return *ip;
}

voi d mai n(void) {
= getVal ue(&);

J

/1 ... code that uses j
j = getVal ue(&x);

/1 ... code that uses j
j = getVal ue(&t ype);

/1 ... code that uses j

}

Again, the targets to the pointer, i p, are determined, and now the pointer is made of
the class that can access both data and program memory. The generated code to
dereference the pointer will be such that it can determine the required memory space
from the address, and access either space accordingly. Again, this takes place without
any change in the definition of the pointer.

If assembly code references a C pointer, the compiler will force that pointer to become
a 16-bit mixed target space pointer, in the case of baseline or mid-range programs, or
a 24-bit mixed target space pointer, for PIC18 programs. These pointer types have
unrestricted access to all memory areas and will operate correctly, even if assignments
(of a correctly formatted address) are made to the pointer in the assembly code.

© 2012 Microchip Technology Inc. DS52053B-page 155

MPLAB® XC8 C Compiler User’s Guide

5.453 FUNCTION POINTERS

The MPLAB XC8 compiler fully supports pointers to functions, which allows functions
to be called indirectly. These are often used to call one of several function addresses
stored in a user-defined C array, which acts like a lookup table.

For baseline and mid-range devices, function pointers are always one byte in size and
hold an offset into a jump table that is output by the compiler. This jump table contains
jumps to the destination functions.

For PIC18 devices, function pointers are either 16 or 24 bits wide. The pointer size is
purely based on the amount of program memory available on the target device.

As with data pointers, the target assigned to function pointers is tracked. This is an eas-
ier process to undertake compared to that associated with data pointers as all function
instructions must reside in program memory. The pointer reference graph (described in
Section 6.6.5 “Pointer Reference Graph™) will show function pointers, in addition to
data pointers, as well as all their targets. The targets will be names of functions that
could possibly be called via the pointer.

One notable runtime feature for baseline and mid-range devices is that a function
pointer which contains NULL (the value 0) and is used to call a function indirectly will
cause the code to become stuck in a loop which branches to itself. This endless loop
can be used to detect this erroneous situation. Typically calling a function via a NULL
function would result in the code crashing or some other unexpected behavior. The
label to which the endless loop will jump is called f pbase.

5454 SPECIAL POINTER TARGETS

Pointers and integers are not interchangeable. Assigning an integer constant to a
pointer will generate a warning to this effect. For example:

const char * cp = 0x123; // the conpiler will flag this as bad code

There is no information in the integer constant, 0x123, relating to the type, size or mem-
ory location of the destination. There is a very good chance of code failure if pointers
are assigned integer addresses and dereferenced, particularly for PIC devices that
have more than one memory space. Is 0x123 an address in data memory or program
memory? How big is the object found at address 0x123?

Always take the address of a C object when assigning an address to a pointer. If there
is no C object defined at the destination address, then define or declare an object at
this address which can be used for this purpose. Make sure the size of the object
matches the range of the memory locations that are to be accessed by the pointer.

For example, a checksum for 1000 memory locations starting at address 0x900 in pro-
gram memory is to be generated. A pointer is used to read this data. You may be
tempted to write code such as:

const char * cp;
cp = 0x900; // what resides at 0x900???

and increment the pointer over the data.
However, a much better solution is this:

const char * cp;

const char inputData[1000] @ 0x900;

cp = & nputDat a;

/1 cp is incremented over inputData and used to read val ues there

In this case, the compiler can determine the size of the target and the memory space.
The array size and type indicates the size of the pointer target, the const qualifier on
the object (not the pointer) indicates the target is located in program memory space.

DS52053B-page 156

© 2012 Microchip Technology Inc.

C Language Features

Note that the const array does not need initial values to be specified in this instance,
see Section 5.4.7.1 “Const Type Qualifier” and can reside over the top of other
objects at these addresses.

If the pointer has to access objects in data memory, you need to define a different object
to act as a dummy target. For example, if the checksum was to be calculated over 10
bytes starting at address 0x90 in data memory, the following code could be used.

const char * cp

char inputData10] @ 0x90;

cp = & nputData

/] cp is incremented over inputData and used to read val ues there
User-defined absolute objects will not be cleared by the runtime startup code and can
be placed over the top of other absolute variables.

Take care when comparing (subtracting) pointers. For example:
if(cpl == cp2)
; I/ take appropriate action

The ANSI C standard only allows pointer comparisons when the two pointer targets are
the same object. One exception is that the address may extend to one element past
the end of an array.

Comparisons of pointers to integer constants are even more risky, for example:

i f(cpl == 0x246)
; /] take appropriate action

Never compare pointers with integer constants.

A NULL pointer is the one instance where a constant value can be assigned to a pointer
and this is handled correctly by the compiler. A NULL pointer is numerically equal to 0
(zero), but this is a special case imposed by the ANSI C standard. Comparisons with
the macro NULL are also allowed.

If NULL is the only value assigned to a pointer, the pointer will be made as small as
possible.

© 2012 Microchip Technology Inc. DS52053B-page 157

MPLAB® XC8 C Compiler User’s Guide

5.4.6

A constant is used to represent an immediate value in the source code, as opposed to
a variable that could hold the same value. For example 123 is a constant.

Constant Types and Formats

Like any value, a constant must have a C type. In addition to a constant’s type, the
actual value can be specified in one of several formats.

5.4.6.1 INTEGRAL CONSTANTS

The format of integral constants specifies their radix. MPLAB XC8 supports the ANSI
standard radix specifiers, as well as ones which enables binary constants to be
specified in C code.

The formats used to specify the radices are given in Table 5-7. The letters used to spec-
ify binary or hexadecimal radices are case insensitive, as are the letters used to specify
the hexadecimal digits.

TABLE 5-7: RADIX FORMATS
Radix Format Example
binary Ob number or 0B number 0b10011010
octal 0 number 0763
decimal number 129
hexadecimal 0x number or 0X number O0x2F

Any integral constant will have atype of i nt,l ong int orl ong | ong i nt, sothat
the type can hold the value without overflow. Constants specified in octal or hexadeci-
mal may also be assigned a type of unsi gned i nt, unsigned | ong int or

unsi gned | ong | ong i nt if the signed counterparts are too small to hold the value.

The default types of constants may be changed by the addition of a suffix after the dig-
its; e.g., 23U, where U is the suffix. Table 5-8 shows the possible combination of suf-
fixes and the types that are considered when assigning a type. So, for example, if the
suffix | is specified and the value is a decimal constant, the compiler will assign the
type | ong i nt, if that type will hold the constant; otherwise, it will assigned

I ong | ong int. Ifthe constant was specified as an octal or hexadecimal constant,
then unsigned types are also considered.

TABLE 5-8: SUFFIXES AND ASSIGNED TYPES
Suffix Decimal Octal or Hexadecimal
uoru unsi gned int unsi gned int
unsi gned | ong int unsi gned | ong int
unsi gned long long int unsi gned long long int
| orL long int I ong int

long long int unsi gned | ong int
long long int

unsi gned long long int

uorU,and! orL unsi gned | ong int

unsi gned | ong long int

unsi gned | ong int
unsi gned long long int

I'l orLL long long int long long int

unsi gned long long int

uorU andl | orLL

unsi gned long long int unsi gned long long int

DS52053B-page 158 © 2012 Microchip Technology Inc.

C Language Features

Here is an example of code that may fail because the default type assigned to a con-
stant is not appropriate:

unsigned long int result;
unsi gned char shifter;

voi d mai n(voi d)

{
shifter = 20;
result = 1 << shifter;
/1 code that uses result
}

The constant 1 (one) will be assigned an i nt type, hence the result of the shift opera-
tion will be an i nt . Even though this result is assigned to the | ong variable, resul t,
it can never become larger than the size of an i nt, regardless of how much the con-
stant is shifted. In this case, the value 1 shifted left 20 bits will yield the result 0, not
0x100000.

The following uses a suffix to change the type of the constant, hence ensure the shift
result has an unsi gned | ong type.

result = 1UL << shifter;

5.4.6.2 FLOATING-POINT CONSTANT

Floating-point constants have doubl e type unless suffixed by f or F, in which case it
isafl oat constant. The suffixes| or L specify al ong doubl e type which is consid-
ered an identical type to doubl e by MPLAB XC8.

© 2012 Microchip Technology Inc. DS52053B-page 159

MPLAB® XC8 C Compiler User’s Guide

5.46.3 CHARACTER AND STRING CONSTANTS

Character constants are enclosed by single quote characters, ' , for example’ a’ . A
character constant has i nt type, although this may be later optimized to a char type
by the compiler.

To comply with the ANSI C standard, the compiler does not support the extended char-
acter set in characters or character arrays. Instead, they need to be escaped using the
backslash character, as in the following example:

const char nane[] = "Bj\370rk";
printf("%'s Resum 351", nane); \\ prints "Bjgrk's Resumg"

Multi-byte character constants are not supported by this implementation.

String constants, or string literals, are enclosed by double quote characters “, for exam-
ple “hel I o wor | d”. The type of string constants is const char * and the character
that make up the string are stored in the program memory, as are all objects qualified
const.

A common warning relates to assigning a string literal to a pointer that does not specify
a const target, for example:

char * cp = "hello world\n";

The string characters cannot be modified, but this type of pointer allows writes to take
place, hence the warning. To prevent yourself from trying to overwrite the string,
qualifier the pointer target as follows. See also Section 5.4.5.1 “Combining Type
Qualifiers and Pointers”.

const char * cp = "hello world\n";

Defining and initializing an array (i.e., not a pointer) with a string is an exception. For
example:

char ca[]= "hello world\n";

will actually copy the string characters into the RAM array, rather than assign the
address of the characters to a pointer, as in the previous examples. The string literal
remains read-only, but the array is both readable and writable.

The MPLAB XC8 compiler will use the same storage location and label for strings that
have identical character sequences, except where the strings are used to initialize an
array residing in the data space. For example, in the code snippet

i f(strncnp(scp, "hello", 6) == 0)

fred = 0;

if(strcnp(scp, "world") == 0)
fred--;

i f(strcnp(scp, "hello world") == 0)
fred++;

the characters in the string “wor | d” and the last 6 characters of the string “hel | o
wor | d” (the last character is the nul terminator character) would be represented by the
same characters in memory. The string “hel | 0” would not overlap with the same char-
acters in the string “hel | o wor | d” as they differ in terms of the placement of the nul
character.

Two adjacent string constants (i.e., two strings separated only by white space) are
concatenated by the compiler. Thus:

const char * cp = "hello" "world";
will assign the pointer with the address of the string “hel | o wor | d *“.

DS52053B-page 160

© 2012 Microchip Technology Inc.

C Language Features

5.4.7 Standard Type Qualifiers

Type qualifiers provide additional information regarding how an object may be used.
The MPLAB XC8 compiler supports both ANSI C qualifiers and additional special qual-
ifiers which are useful for embedded applications and which take advantage of the 8-bit
PIC MCU architecture.

5.4.7.1 CONST TYPE QUALIFIER

MPLAB XC8 supports the use of the ANSI type qualifiers const and vol atil e.

The const type qualifier is used to tell the compiler that an object is read only and will
not be modified. If any attempt is made to modify an object declared const , the com-
piler will issue a warning or error.

User-defined objects declared const are placed in a special psect linked into the pro-
gram space. Objects qualified const may be absolute. The @ addr ess construct is

used to place the object at the specified address in program memory as in the following
example which places the object t abl eDef at address 0x100.

const int tableDef[] @O0x100 = { 0, 1, 2, 3, 4};

Usually a const object must be initialized when it is declared, as it cannot be assigned
a value at any point at runtime. For example:

const int version = 3;

will define ver si on as being ani nt variable that will be placed in the program mem-
ory, will always contain the value 3, and which can never be modified by the program.
However, uninitialized const objects can be defined and are useful if you need to place
an object in program memory over the top of other objects at a particular location. Usu-
ally uninitialized const objects will be defined as absolute as in the following example.

const char checksunmRange[0x100] @ 0x800;

will define the object checksunRange as a 0x100 byte array of characters located at
address 0x800 in program memory. This definition will not place any data in the HEX
file.

5.4.7.2 VOLATILE TYPE QUALIFIER

The vol ati | e type qualifier is used to tell the compiler that an object cannot be guar-
anteed to retain its value between successive accesses. This prevents the optimizer
from eliminating apparently redundant references to objects declared vol ati |l e
because it may alter the behavior of the program to do so.

Any SFR which can be modified by hardware or which drives hardware is qualified as
vol ati | e, and any variables which may be modified by interrupt routines should use
this qualifier as well. For example:

volatile static unsigned int TACTL @ 0x160;

The vol at i | e qualifier does not guarantee that any access will be atomic, which is
often not the case with the 8-bit PIC MCU architecture. All these devices can only
access a maximum of 1 byte of data per instruction.

The code produced by the compiler to access vol at i | e objects may be different to
that to access ordinary variables, and typically the code will be longer and slower for
vol ati | e objects, so only use this qualifier if it is necessary. However, failure to use
this qualifier when it is required may lead to code failure.

Another use of the vol ati | e keyword is to prevent variables being removed if they

are not used in the C source. If a non-vol at i | e variable is never used, or used in a
way that has no effect on the program’s function, then it may be removed before code
is generated by the compiler.

© 2012 Microchip Technology Inc. DS52053B-page 161

MPLAB® XC8 C Compiler User’s Guide

A C statement that consists only of avol at i | e variable’s name will produce code that
reads the variable’s memory location and discards the result. For example the entire
statement:

PORTB;

will produce assembly code the reads PORTB, but does nothing with this value. This is
useful for some peripheral registers that require reading to reset the state of interrupt
flags. Normally such a statement is not encoded as it has no effect.

Some variables are treated as being vol at i | e even though they may not be qualified
in the source code. See Section 5.12.3.4 “Undefined Symbols” if you have assem-
bly code in your project.

5.4.8 Special Type Qualifiers

The MPLAB XC8 C Compiler supports special type qualifiers to allow the user to control
placement of st at i ¢ and ext er n class variables into particular address spaces.

54.8.1 PERSISTENT TYPE QUALIFIER

By default, any C variables that are not explicitly initialized are cleared on startup. This
is consistent with the definition of the C language. However, there are occasions where
it is desired for some data to be preserved across a Reset.

The per si st ent type qualifier is used to qualify variables that should not be cleared
by the runtime startup code.

In addition, any per si st ent variables will be stored in a different area of memory to
other variables. Different psects are used to hold these objects. See
5.15.2 “Compiler-Generated Psects” for more information.

This type qualifier may not be used on variables of class aut o; however, statically
defined local variables may be qualified per si st ent . For example, you should write:

voi d test(void)

{

static persistent int intvar; /* nust be static */
11

}
If the xc 8 option, - - STRI CT is used, this type qualifier is changed to __per si st ent .

5.4.8.2 NEAR TYPE QUALIFIER

Some of the 8-bit PIC architectures implement data memory which can be always
accessed regardless of the currently selected bank. This common memory can be
used to reduce code size and execution times as the bank selection instructions that
are normally required to access data in banked memory are not required when access-
ing the common memory. PIC18 devices refer to this memory as the access bank mem-
ory. Mid-range and baseline devices have very small amounts of this memory, if it is
present at all. PIC18 devices have substantially more common memory, but the amount
differs between devices. See your device data sheet for more information.

The near type qualifier can be used to place non-aut o variables in common memory.

The compiler automatically uses the common memory for frequently accessed
user-defined variables so this qualifier would only be needed for special memory place-
ment of objects, for example if C variables are accessed in hand-written assembly code
that assumes that they are located in this memory.

DS52053B-page 162

© 2012 Microchip Technology Inc.

C Language Features

This qualifier is controlled by the compiler option - - ADDRQUAL, which determines its
effect, see Section 4.8.16 “--ADDRQUAL: Set Compiler Response to Memory
Qualifiers”. Based on this option’s settings, this qualifier may be binding or ignored
(which is the default operation). Qualifiers which are ignored will not produce an error
or warning, but will have no effect.

Here is an example of an unsi gned char object qualified as near :
near unsigned char fred;

Objects qualified near cannot be aut o or parameters to a function, but can be quali-
fied st at i c, allowing them to be defined locally within a function, as in:
voi d nyFunc(void) {

static near unsigned char |ocal _fred;
Note that the compiler may store some temporary objects in the common memory, so
not all of this space may be available for user-defined variables.

If the xc8 option, - - STRI CT is used, this type qualifier is changed to __near.
5.4.8.3 FAR TYPE QUALIFIER

The f ar type qualifier is used to place non-aut o variables into the program memory
space for those PIC18 devices which can support external memory. It will be ignored
when compiling for PIC10/12/16 targets. The compiler assumes that variables will be
located in RAM which is implemented in this memory space.

Access of f ar variables are less efficient than that of internal variables and will result
in larger, slower code.

This qualifier is controlled by the compiler option - - ADDRQUAL, which determines its
effect on PIC18 devices, see Section 4.8.16 “--ADDRQUAL: Set Compiler
Response to Memory Qualifiers”. Based on this option’s settings, this qualifier may
be binding or ignored (which is the default operation). Qualifiers which are ignored will
not produce an error or warning, but will have no effect.

Here is an example of an unsi gned i nt object placed into the device’s external pro-
gram memory space:

far unsigned int farvar;

Objects qualified f ar cannot be aut o or parameters to a function, but can be qualified
st ati c, allowing them to be defined locally within a function, as in:

voi d nyFunc(void) {
static far unsigned char |ocal _far;

If the - - STRI CT is used, this type qualifier is changedto __f ar.

Note that not all PIC18 devices support external memory in their program memory
space and, thus, the f ar qualifier is not applicable to all PIC18 devices. On supported
devices, the address range where the additional memory will be mapped must first be
specified with the - - RAMoption, Section 4.8.48 “--RAM: Adjust RAM Ranges”. For
example, to map additional data memory from 20000h to 2FFFFh use

- - RAM=def aul t, +20000- 2FFFF.

5.4.8.4 BANKO, BANK1, BANK2 AND BANK3 TYPE QUALIFIERS

The bankO0, bank1, bank2 and bank3 type qualifiers are recognized by the compiler
and allow some degree of control of the placement of objects in the device’s data mem-
ory banks. When compiling for PIC18 targets, these qualifiers are only accepted for
portability and have no effect on variable placement; on other devices they can be used
to define C objects that are assumed to be located in certain memory banks by
hand-written assembly code. The compiler automatically allocates variables to all data
banks, so these qualifiers are not normally needed.

© 2012 Microchip Technology Inc. DS52053B-page 163

MPLAB® XC8 C Compiler User’s Guide

Although a few devices implement more than 4 banks of data RAM, bank qualifiers to
allow placement into these upper banks are not currently available.

These qualifiers are controlled by the compiler option - - ADDRQUAL, which determines
their effect, see Section 4.8.16 “--ADDRQUAL: Set Compiler Response to Memory
Qualifiers”. Based on this option’s settings, these qualifiers may be binding or ignored
(which is the default operation). Qualifiers which are ignored will not produce an error
or warning, but will have no effect.

Objects qualified with any of these qualifiers cannot be aut o or parameters to a func-
tion, but can be qualified st at i ¢, allowing them to be defined locally within a function,
asin:
voi d nmyFunc(void) {

static bankl unsigned char play_node;

If the xc8 option, - - STRI CT is used, these qualifiers are changed to __bankO,
__bankl1, _bank2 and __bank3.

5485 EEPROM TYPE QUALIFIER

The eepr omtype qualifier is recognized by the compiler for baseline and mid-range
devices only and indicates that objects should be placed in the EEPROM memory. Not
all devices implement EEPROM memory. Check your device data sheet for more infor-
mation.

Objects qualified with this qualifier cannot be aut o or parameters to a function, but can
be qualified st at i ¢, allowing them to be defined locally within a function, as in:

voi d nmyFunc(void) {
static eepromunsi gned char inputData[3];

The generated code to access eepr omqualified variables will be much longer and
slower than code to access RAM-based variables.

If the - - STRI CT option is used, this qualifier is changed to __eeprom

DS52053B-page 164

© 2012 Microchip Technology Inc.

C Language Features

5.5 MEMORY ALLOCATION AND ACCESS

There are two broad groups of RAM-based variables: auto/parameter variables, which
are allocated to some form of stack, and global/static variables, which are positioned

freely throughout the data memory space at static locations. The memory allocation of
these two groups is discussed separately in the following sections.

55.1 Address Spaces

All 8-bit PIC devices have a Harvard architecture, which has a separate data memory
(RAM) and program memory space (often flash). Some devices also implement
EEPROM.

The data memory uses banking to increase the amount of available memory (referred
toin the data sheets as the general purpose register file) without having to increase the
assembly instruction width. One bank is “selected” by setting one or more bits in an
SFR. (Consult your device data sheet for the exact operation of the device you are
using.) Most instructions which access a data address use only the offset into the cur-
rently selected bank to access data. The exception is the PIC18 instruction MOVFF,
which takes a full banked address and operates independently of the selected bank.
Some devices only have one bank but many have more than one.

Both the general purpose RAM and SFRs both share the same data space and may
appear in all available memory banks. PIC18 devices have all SFRs in the one data
bank, but mid-range and baseline devices have SFRs at the lower addresses of each
bank. Due to the location of SFRs in these devices, the general purpose memory
becomes fragmented and this limits the size of most C objects.

The Enhanced mid-range devices overcome this fragmentation by allowing a linear
addressing mode, which allows the general purpose memory to be accessed as one
contiguous chunk. Thus, when compiling for these devices, the maximum allowable
size of objects typically increases. Objects defined when using PIC18 devices can also
typically use the entire data memory. See Section 5.5.2.3 “Size Limits of Auto
Variables” and Section 5.5.2.1.2 “Non-Auto Variable Size Limits”.

Many devices have several bytes which can be accessed regardless of which bank is
currently selected. This memory is called common memory. The PIC18 data sheets
refer to the bank in which this memory is stored as the access bank, and hence it is
often referred to as the access bank memory. Since no code is required to select a bank
before accessing these locations, access to objects in this memory is typically faster
and produces smaller code. The compiler always tries to use this memory if possible.

The program memory space is primarily for executable code, but data can also be
located here. There are several ways the different device families locate and read data
from this memory, but all objects located here will be read-only.

55.2 Variables in Data Space Memory

Most variables are ultimately positioned into the data space memory. The exceptions
are non-aut o variables which are qualified as const , which are placed in the program
memory space, or eepr omqualified variables.

Due to the fundamentally different way in which aut o variables and non-aut o vari-
ables are allocated memory, they are discussed separately. To use the C language ter-
minology, these two groups of variables are those with automatic storage duration and
those with permanent storage duration, respectively.

© 2012 Microchip Technology Inc. DS52053B-page 165

MPLAB® XC8 C Compiler User’s Guide

Note: Theterms “local” and “global” are commonly used to describe variables, but
are not ones defined by the language Standard. The term “local variable” is
often taken to mean a variable which has scope inside a function, and
“global variable” is one which has scope throughout the entire program.
However, the C language has three common scopes: block, file (i.e., inter-
nal linkage) and program (i.e., external linkage), so using only two terms to
describe these can be confusing. For example, a st at i ¢ variable defined
outside a function has scope only in that file, so it is not globally accessible,
but it can be accessed by more than one function inside that file, so it is not
local to any one function, either.

5.5.2.1 NON-AUTO VARIABLE ALLOCATION

Non-aut o variables (those with permanent storage duration) are located by the com-
piler into any of the available data banks. This is done in a two-stage process: placing
each variable into an appropriate psect and later linking that psect into a predetermined
bank. See Section 5.15.1 “Program Sections” for an introductory guide to psects.
Thus, during compilation, the code generator can determine which bank will hold each
variable and encode the output accordingly, but it will not know the exact location within
that bank.

The compiler will attempt to locate all variables in one bank (i.e., place all variables in
the psect destined for this bank), but if this fills (i.e., if the compiler detects that the psect
has become too large for the free space in a bank), variables will be located in other
banks via different psects. Qualifiers are not required to have these variables placed in
banks other than bank 0 but can be used if you want to force a variable to a particular
bank. See Section “--RAM=default,+20000-2FFFF.” and

Section 4.8.16 “--ADDRQUAL: Set Compiler Response to Memory Qualifiers” for
more information on how to do this. If common memory is available on the target
device, this will also be considered for variables. This memory may be limited in size
and may be reserved for special use, so only a few variables may be allocated to it.

The compiler considers three categories of non-aut o variables, which all relate to the
value the variable should contain by the time the program begins. Each variable cate-
gory has a corresponding psect which is used to hold the output code which reserves
memory for each variable. The base name of each psect category is tabulated below.
A full list of all psect names are in Section 5.15.2 “Compiler-Generated Psects”.

nv These psects are used to store variables qualified per si st ent , whose values
should not be altered by the runtime startup code. They are not cleared or
otherwise modified at startup.

bss These psects contain any uninitialized variables, which are not assigned a value
when they are defined, or variables which should be cleared by the runtime
startup code.

dat a These psects contain the RAM image of any initialized variables, which are as-
signed a non-zero initial value when they are defined and which must have
a value copied to them by the runtime startup code.

As described in Section 5.10 “Main, Runtime Startup and Reset”, the base name of
data space psects is always used in conjunction with a linker class name to indicate the
RAM bank in which the psect will be positioned. This section also lists other variants of
these psects and indicates where these psect must be linked. See also

Section 5.15.2 “Compiler-Generated Psects” for more information on how initial
values are assigned to the variables.

DS52053B-page 166 © 2012 Microchip Technology Inc.

C Language Features

Note that the dat a psect used to hold initialized variables is the psect that holds the
RAM variables themselves. There is a corresponding psect (called i dat a) that is
placed into program memory (so it is non-volatile) and which is used to hold the initial
values that are copied to the RAM variables by the runtime startup code.

All non-aut o variables, except for st at i ¢ variables, discussed in

Section 5.5.2.1.1 “ Static Variables”, always use their lexical name with a leading
underscore character as the assembly identifier used for this object. See

Section 5.12.3.1 “Equivalent Assembly Symbols” for more information on the
mapping between C- and assembly-domain symbols.

5.5.2.1.1 Static Variables

All st at i ¢ variables have permanent storage duration, even those defined inside a
function which are “local static” variables. Local st at i ¢ variables only have scope in
the function or block in which they are defined, but unlike aut o variables, their memory
is reserved for the entire duration of the program. Thus they are allocated memory like
other non-aut o variables.

Static variables may be accessed by other functions via pointers since they have
permanent duration.

Variables which are st at i ¢ are guaranteed to retain their value between calls to a
function, unless explicitly modified via a pointer.

Variables which are st at i ¢ and which are initialized only have their initial value
assigned once during the program'’s execution. Thus, they may be preferable over ini-
tialized aut o objects which are assigned a value every time the block in they are
defined begins execution. Any initialized st at i ¢ variables are initialized in the same
way as other non-aut o initialized objects by the runtime startup code, see

Section 4.4.2 “ Startup and Initialization”.

The assembly symbols used to access static objects in assembly code are discussed
in Section 5.12.3.1 “Equivalent Assembly Symbols”.

5.5.2.1.2 Non-Auto Variable Size Limits

Arrays of any type (including arrays of aggregate types) are fully supported by the com-
piler. So too are the structure and union aggregate types, see 5.4.4 “Structures and
Unions”. These objects can often become large in size and may affect memory allo-
cation.

When compiling for enhanced mid-range PIC devices, the size of an object (array or
aggregate object) is typically limited only by the total available data memory. Single
objects that will not fit into any of the available general purpose RAM ranges will be allo-
cated memory in several RAM banks and accessed using the device’s linear GPR
(general purpose RAM).

Note that the special function registers (which reside in the data memory space) or
memory reservations in general purpose RAM may prevent objects from being allo-
cated contiguous memory in the one bank. In this case objects that are smaller than
the size of a RAM bank may also be allocated across multi-banks. The generated code
to access multi-bank objects will always be slower and the associated code size will be
larger than for objects fully contained within a single RAM bank.

When compiling for PIC18 devices, the size of an object is also typically limited only by
the data memory available. Objects can span several data banks.

On baseline and other mid-range devices, arrays and structures are limited to the max-
imum size of the available GPR memory in each RAM bank, not the total amount of
memory remaining. An error will result if an array is defined which is larger than this
size.

© 2012 Microchip Technology Inc. DS52053B-page 167

MPLAB® XC8 C Compiler User’s Guide

With any device, reserving memory in general purpose RAM (see

Section 4.8.48 “--RAM: Adjust RAM Ranges”), or defining absolute variables in the
middle of data banks (see Section 5.5.4 “Absolute Variables”), further restricts the
contiguous memory in the data banks and may reduce the maximum size of objects
you can define.

5.5.2.1.3 Changing the Default Non-Auto Variable Allocation

There are several ways in which non-aut o variables can be located in locations other
than those chosen by the compiler.

Variables can be placed in other memory spaces by the use of qualifiers. For example
if you wish to place variables in the program memory space, then the const specifier
should be used (see Section 5.4.7.1 “Const Type Qualifier”). The eepr omqualifier
(see 5.4.8.5 “Eeprom Type Qualifier”) can be used to allocate variables to the
EEPROM, if such memory exists on your target device.

If you wish to prevent variables from using one or more data memory locations so that
these locations can be used for some other purpose, you are best reserving the mem-
ory using the memory adjust options. See Section 4.8.48 “--RAM: Adjust RAM
Ranges” for information on how to do this.

If only a few non-aut o variables are to be located at specific addresses in data space
memory, then the variables can be made absolute. This allows individual variables to
be explicitly positioned in memory at an absolute address. Absolute variables are
described in Section 5.5.4 “Absolute Variables”. Once variables are made absolute,
their address is hard coded in generated output code, they are no longer placed in a
psect and do not follow the normal memory allocation procedure.

The psects in which the different categories of non-auto variables (the nv, bss and
dat a psects described in Section 5.5.2.1 “Non-Auto Variable Allocation”) can be
shifted as a whole by changing the default linker options. So, for example, you could
move all the persistent variables. However, typically these psects can only be moved
within the data bank in which they were allocated by default. See Section 5.10 “Main,
Runtime Startup and Reset” for more information on changing the default linker
options for psects. The code generate makes assumptions as to the location of these
psects and if you move them to a location that breaks these assumptions, code may
fail.

Non-auto can also be placed at specific positions by using the psect pragma, see
Section 5.14.4.8 “The #pragma psect Directive”. The decision whether variables
should be positioned this way or using absolute variables should be based on the
location requirements.

DS52053B-page 168

© 2012 Microchip Technology Inc.

C Language Features

5.5.2.2 AUTO VARIABLE ALLOCATION AND ACCESS

This section discusses allocation of aut o variables (those with automatic storage dura-
tion). This also include function parameter variables, which behave like aut o variables
in terms of their storage duration and scope. Temporary variables defined by the com-
piler also fall into this group. They are identical to autos except they are defined by the
compiler, not the programmer, and as a result, have no C name.

The aut o (short for automatic) variables are the default type of local variable. Unless
explicitly declared to be st at i c, a local variable will be made aut 0. The aut o key-
word may be used if desired.

The aut o variables, as their name suggests, automatically come into existence when

a function is executed, then disappear once the function returns. Since they are not in

existence for the entire duration of the program, there is the possibility to reclaim mem-
ory they use when the variables are not in existence and allocate it to other variables

in the program.

Typically such variables are stored on some sort of a data stack, which can easily allo-
cate then deallocate memory as required by each function. All devices targeted by the
compiler do not have a data stack that can be operated in this fashion. The devices can
only use their hardware stack for function return addresses and have no instructions

which allow data to be placed onto this stack. As a result, an alternative stack construct
is implemented by the compiler. The stack mechanism employed is known as a com-
piled stack and is fully described in Section 5.5.2.2.1 “Compiled Stack Operation”.

Once aut o variables have been allocated a relative position in the compiled stack, the
stack itself is then allocated memory in the data space. This is done is a similar fashion
to the way non-aut o variables are assigned memory: a psect is used to hold the stack
and this psect is placed into the available data memory by the linker. The psect base
name used to hold the compiled stack is called cst ack, and like with non-aut o vari-
able psects, the base name is always used in conjunction with a linker class name to
indicate the RAM bank in which the psect will be positioned. See

Section 5.15.2 “Compiler-Generated Psects” for the limitations associated with
where this psect can be linked.

The aut o variables defined in a function will not necessarily be allocated memory in
the order declared, in contrast to parameters which are always allocated memory
based on their lexical order. In fact, aut o variables for one function may be allocated
in many RAM banks.

The standard qualifiers: const and vol at i | e may both be used with aut o variables
and these do not affect how they are positioned in memory. This implies that a local
const -qualified object is still an aut o object and, as such, will be allocated memory in
the compiled stack in the data space memory, not in the program memory like with
non-aut o const objects.

The compiler will try to locate the stack in one data bank, but if this fills (i.e., if the com-
piler detects that the stack psect has become too large), it can build up the stack into
several components (each with their own psect) and link each in a different bank.

Each aut o object is referenced in assembly code using a special symbol defined by
the code generator. If accessing auto variables defined in C source code, you must use
these symbols, which are discussed in Section 5.12.3 “Interaction Between
Assembly and C Code”.

5.5.2.2.1 Compiled Stack Operation

A compiled stack consists of fixed memory areas that are usable by each function’s
stack-based variables. When a compiled stack is used, functions are not re-entrant
since stack-based variables in each function will use the same fixed area of memory
every time the function is invoked.

© 2012 Microchip Technology Inc. DS52053B-page 169

MPLAB® XC8 C Compiler User’s Guide

Fundamental to the generation of the compiled stack is the call graph, which defines a
tree-like hierarchy of function calls, i.e it shows what functions may be called by each
function.

There will be one graph produced for each root function. A root function is typically not
called, but which is executed via other means and contains a program entry point. The
function mai n() is an example of a root function that will be in every project. Interrupt
functions which are executed when a hardware interrupt occurs, are another example.

FIGURE 5-2: FORMATION OF CALL GRAPH
main {&
F1(..);
F2(..); Call graph
F3(..);
} main
Fl
E\ F4
d F2
F4(.); isr
} F5
—M Fé6
isr {
F5(.) ; Analysis of program
F6(..);
}

Figure 5-2 shows sections of a program being analyzed by the code generator to form
a call graph. In the original source code, the function mai n() calls F1(), F2() and
F3().F1() calls F4(), but the other two functions make no calls. The call graph for
mai n() indicates these calls. The symbols F1, F2 and F3 are all indented one level
under main. F4 is indented one level under F1.

This is a static call graph which shows all possible calls. If the exact code for function
F1() looked like:
int Fl(void) {
i f (PORTA == 44)
return F4();
return 55;

}

the function F4() will always appear in the call graph, even though it is conditionally
executed in the actual source code. Thus, the call graph indicates all functions that
might be called.

In the diagram, there is also an interrupt function, i sr (), and it too has a separate
graph generated.

The term main-line code is often used, and refers to any code that is executed as a
result of the mai n() function being executed. In the above figure, F1(), F2(), F3()
and F4() are only ever called by main-line code.

The term interrupt code refers to any code that is executed as a result of an interrupt
being generated, in the above figure, F5() and F6() are called by interrupt code.

DS52053B-page 170

© 2012 Microchip Technology Inc.

C Language Features

Figure 5-3 graphically shows an example of how the compiled stack is formed.

FIGURE 5-3: FORMATION OF THE COMPILED STACK
o Formation of auto-parameter block (APB)
for function F2
/// 77777777777777777777 \& a |
F2(int a, int b)--{----_| b 2
char ep----------—-—---1- -5
T T
} /' © Analysis of call graph
/ main
F1l
/// main // F4
R s F2
3 % Py F3
%.é F2
EG F4; isr
° - F5
L. 1lsrxr F6
.| F51 |F6
e Overlap of non-concurrently active APBs
to form compiled stack

Each function in the program is allocated a block of memory for its parameter, aut o
and temporary variables. Each block is referred to as an auto-parameter block (APB).
The figure shows the APB being formed for function F2() , which has two parameters,
a and b, and one aut o variable, c.

The parameters to the function are first grouped in an order strictly determined by the
lexical order in which they appear in the source code. These are then followed by any
aut o objects; however, the aut o objects may be placed in any order. So we see mem-
ory for a is followed by that for b and lastly c.

Once these variables have been grouped, the exact location of each object is not
important at this point and we can represent this memory by one block — the APB for
this function.

The APBs are formed for all functions in the program. Then, by analyzing the call graph,
these blocks are assigned positions, or base values, in the compiled stack.

Memory can be saved if the following point is observed: If two functions are never
active at the same time, then their APBs can be overlapped.

In the example shown in the figure, F4() and F1() are active at the same time, in fact
F1() calls F4() . However, F2(), F3() and F1() are never active at the same time;
F1() mustreturn before F2() or F3() can be called by mai n() . The function mai n()
will always be active and so its APB can never overlap with that of another function.

In the compiled stack, you can see that the APB for mai n() is allocated unique mem-
ory. The blocks for F1(), F2() and F3() are all placed on top of each other and the
same base value in the compiled stack; however, the memory taken up by the APBs
for F1() and F4() are unique and do not overlap.

Our example also has an interrupt function, i sr (), and its call graph is used to assem-
ble the APBs for any interrupt code in the same way. Being the root of a graph, i sr ()
will always be allocated uniqgue memory, and the APBs for interrupt functions will be
allocated memory following.

© 2012 Microchip Technology Inc. DS52053B-page 171

MPLAB® XC8 C Compiler User’s Guide

The end result is a block of memory which forms the compiled stack. This block can
then be placed into the device’s memory by the linker.

For devices with more than one bank of data memory, the compiled stack may be built
up into components, each located in a different memory bank. The compiler will try to
allocate the compiled stack in one bank, but if this fills, it will consider other banks. The
process of building these components of the stack is the same, but each function may
have more than one APB and these will be allocated to one of the stack components
based on the remaining memory in the component’s destination bank.

Human readable symbols are defined by the code generator which can be used to
access auto and parameter variables in the compiled stack from assembly code, if
required. See Section 5.12.3 “Interaction Between Assembly and C Code” for full
information between C domain and assembly domain symbols.

5.5.2.3 Size Limits of Auto Variables

The compiled stack is built up as one contiguous block which can be placed into one
of the available data banks. However, if the stack becomes too large for this space, it
can be assembled into several blocks, with each block being positioned in a different
bank of memory. Thus the total size of the stack is roughly limited only by the available
memory on the device.

Unlike with non-aut o variables, it is not efficient to access aut o variables within the
compiled stack using the linear memory of Enhanced mid-range devices. Thus, for all
devices, including PIC18 and Enhanced mid-range PIC MCUs, each component of the
compiled stack must fit entirely within one bank of data memory on the target device
(however, you can have more than one component, each allocated to a different bank).
This limits the size of objects within the stack to the maximum free space of the bank
in which it is allocated. The more aut o variables in the stack; the more restrictive the
space is to large objects. Recall that SFRs on mid-range devices are usually present
in each data bank, so the maximum amount of GPR available in each bank is typically
less than the bank size for these devices.

If a program requires large objects that should not be accessible to the entire program,
consider leaving them as local objects, but using the st at i ¢ specifier. Such variables
are still local to a function, but are no longer aut o and have fewer size limitations. They
are allocated memory as described in Section 5.5.2.1 “Non-Auto Variable
Allocation”.

5.5.24 CHANGING THE DEFAULT AUTO VARIABLE ALLOCATION

As aut o variables are placed in a stack, there is no means to move individual vari-
ables. They cannot be made absolute, nor can they be moved using the #pr agna
psect directive.

The psects in which the aut o variables reside can be shifted as a whole by changing
the default linker options. However, these psects can only be moved within the data
bank in which they were allocated by default. See Section 5.10 “Main, Runtime
Startup and Reset” for more information on changing the default linker options for
psects. The code generate makes assumptions as to the location of these psects and
if you move them to a location that breaks these assumptions, code may fail.

DS52053B-page 172

© 2012 Microchip Technology Inc.

C Language Features

55.3 Variables in Program Space

The only variables that are placed into program memory are those that are not aut o
and which have been qualified const . Any aut o variables qualified const are placed
in the compiled stack along with other aut o variables, and all components of the com-
piled stack will only ever be located in the data space memory.

Any const -qualified (aut o or non-aut o) variable will always be read-only and any
attempt to write to these in your source code will result in an error being issued by the
compiler.

On some 8-bit PIC devices, the program space is not directly readable by the device.
For these devices, the compiler stores data in the program memory by means of RETLW
instructions which can be called, and which will return a byte of data in the Wregister.
The compiler will generate the code necessary to make it appear that program memory
is being read directly.

Enhanced mid-range PIC devices can directly read their program memory, although
the compiler will still usually store data as RETLWinstructions. This way the compiler
can either produce code that can call these instructions to obtain the program memory
data as with the ordinary mid-range devices, or directly read the operand to the instruc-
tion (the LSB of the RETLWinstruction). The most efficient access method can be
selected by the compiler when the data needs to be read.

Data can be stored as individual bytes in the program memory of PIC18 devices. This
can be read using table read instructions.

On all devices, accessing data located in program memory is much slower than
accessing objects in the data memory. The code associated with the access is also
larger.

A const object is usually defined with initial values, as the program cannot write to
these objects at runtime. However, this is not a requirement. An uninitialized const
object can be defined to define a symbol, or label, but not make a contribution to the
output file. Uninitialized const objects are often made absolute, see

Section 5.5.4 “Absolute Variables”. Here are examples of const object definitions.

const char IGype ='A; // initialized const object
const char buffer[10]; /1 1 just define a | abel

The data held by non-aut o const variables is placed in one of several psects, based
on the target device. See Section 5.15.2 “Compiler-Generated Psects” for the
limitations associated with where these psects can be linked.

See Section 5.12.3 “Interaction Between Assembly and C Code” for the equivalent
assembly symbols that are used to represent const-qualified variables in program
memory.

© 2012 Microchip Technology Inc. DS52053B-page 173

MPLAB® XC8 C Compiler User’s Guide

5.5.3.1 SIZE LIMITATIONS OF CONST VARIABLES

Arrays of any type (including arrays of aggregate types) can be qualified const and
placed in the program memory. So too can structure and union aggregate types, see
5.4.4 “ Structures and Unions”. These objects can often become large in size and
may affect memory allocation.

For baseline PIC devices, the maximum size of a single const object is 255 bytes.

However, you can define as many const objects as required provided the total size

does not exceed the available program memory size of the device. Note that as well as
other program code, there is also code required to be able to access const -qualified
data in the program memory space. Thus, you may need additional program memory
space over the size of the object itself. This additional code to access the const data
is only included once, regardless of the amount or number of const -qualified objects.

For all other 8-bit devices, the maximum size of a const -qualified object is limited only
by the available program memory. These devices also use additional code that
accesses the const data. PIC18 devices need additional code each time an object is
accessed, but this is typically small. The mid-range devices include a larger routine, but
this code is also only included once, regardless of the amount or number of

const -qualified objects.

5.5.3.2 CHANGING THE DEFAULT ALLOCATION

If you only intend to prevent all variables from using one or more program memory loca-
tions so that you can use those locations for some other purpose, you are best reserv-
ing the memory using the memory adjust options. See Section 4.8.49 “--ROM: Adjust
ROM Ranges” for information on how to do this.

If only a few non-aut o const variables are to be located at specific addresses in pro-
gram space memory, then the variables can be made absolute. This allows individual
variables to be explicitly positioned in memory at an absolute address. Absolute vari-
ables are described in Section 5.5.4 “Absolute Variables”. Once variables are made
absolute, their address is hard coded in generated output code, they are no longer
placed in a psect and do not follow the normal memory allocation procedure.

The psects in which the different categories of non-aut o const variables can be
shifted as a whole by changing the default linker options. However, there are limitations
in where these psects can be moved to. See Section 5.10 “Main, Runtime Startup
and Reset” for more information on changing the default linker options for these
psects.

Variables in program memory can also be placed at specific positions by using the
psect pragma, see Section 5.14.4.8 “The #pragma psect Directive”. The decision
whether variables should be positioned this way or using absolute variables should be
based on the location requirements.

DS52053B-page 174

© 2012 Microchip Technology Inc.

C Language Features

554 Absolute Variables

Most variables can be located at an absolute address by following its declaration with
the construct @ addr ess, where addr ess is the location in memory where the
variable is to be positioned. Such a variables is known as an absolute variables.

5.54.1 ABSOLUTE VARIABLES IN DATA MEMORY

Absolute variables are primarily intended for equating the address of a C identifier with
a special function register, but can be used to place ordinary variables at an absolute
address in data memory.

For example:
vol atil e unsigned char Portvar @ 0x06;

will declare a variable called Por t var located at 06h in the data memory. The compiler
will reserve storage for this object (if the address falls into general-purpose RAM) and
will equate the variable’s identifier to that address.

The aut o variables cannot be made absolute as they are located in a compiled stack.
See Section 5.5.2.2.1 “Compiled Stack Operation”. The compiler does not make
any checks for overlap of absolute variables with other absolute variables, so this must
be considered when choosing the variable locations. There is no harm in defining more
than one absolute variable to live at the same address if this is what you require. The
compiler will not locate ordinary variables over the top of absolutes, so there is no over-
lap between these objects.

Note: Defining absolute objects can fragment memory and may make it impossi-
ble for the linker to position other objects. Avoid absolute objects if at all
possible. If absolute objects must be defined, try to place them at either end
of a memory bank or page so that the remaining free memory is not frag-
mented into smaller chunks.

When compiling for an enhanced mid-range PIC device, the memory allocated for
some objects may be spread over multiple RAM banks. Such objects will only ever be
accessed indirectly in assembly code, and will use the linear GPR memory imple-
mented on these devices. A linear address (which can be mapped back to the ordinary
banked address) will be used with these objects internally by the compiler.

The address specified for absolute objects on these devices may either be the tradi-
tional banked memory address or the linear address. As the linear addresses start
above the largest banked address, itis clear which address is intended. In the following
example:

int inputBuffer[100] @ 0x2000;

it is clear that i nput Buf f er should placed at address 0x2000 in the linear address
space, which is address 0x20 in bank 0 RAM in the traditional banked address space.
See the device data sheet for exact details regarding your selected device.

Absolute variables in RAM cannot be initialized when they are defined. Define the
absolute variables, then assign them a value at a suitable point in your main-line code.

© 2012 Microchip Technology Inc. DS52053B-page 175

MPLAB® XC8 C Compiler User’s Guide

5542 ABSOLUTE OBJECTS IN PROGRAM MEMORY

Non-aut o objects qualified const can also be made absolute in the same way,
however, the address will indicate an address in program memory. For example:

const int settings[] @O0x200 = { 1, 5, 10, 50, 100 };
will place the array set ti ngs at address 0x200 in the program memory.

Both initialized and uninitialized const objects can be made absolute. That latter is
useful when you only need to define a label in program memory without making a
contribution to the output file.

Variables can also be placed at specific positions by using the psect pragma, see
Section 5.14.4.8 “The #pragma psect Directive”. The decision whether variables
should be positioned this way or using absolute variables should be based on the loca-
tion requirements. Using absolute variables is the easiest method, but only allows
placement at an address which must be known prior to compilation. The psect
pragma is more complex, but offers all the flexibility of the linker to position the new
psect into memory. You can, for example, specify that variables reside at a fixed
address, or that they be placed after other psects, or that the they be placed anywhere
in a compiler-defined or user-defined range of address.

555 Variables in EEPROM

For devices with on-chip EEPROM, the compiler offers several methods of accessing
this memory. You can defined named variables in this memory space, or use
block-access routines to read or write EEPROM. The EEPROM access methods are
described in the following sections.

5.55.1 EEPROM INITIALIZATION

For those devices that support external programming of their EEPROM data area, the
__EEPROM DATA() macro can be used to place initial values into the HEX file ready
for programming. The macro is used as follows.

#i ncl ude <xc. h>

_ EEPROM DATA(O, 1, 2, 3, 4, 5, 6, 7);

The macro has eight parameters, representing eight data values. Each value should be
a byte in size. Unused values should be specified with zero.

The macro may be called multiple times to define the required amount of EEPROM
data. It is recommended that the macro be placed outside any function definition.

This macro cannot used to write to EEPROM locations during runtime; it is used for
pre-loading EEPROM contents at program time only.

For convenience, the macro _EEPROMSI ZE represents the number of bytes of
EEPROM available on the target device.

DS52053B-page 176 © 2012 Microchip Technology Inc.

C Language Features

5552 EEPROM ACCESS FUNCTIONS

The library functions eeprom read() and eeprom wite(), can be called to read
from, and write to, the EEPROM during program execution. On PIC18 devices, these
functions are derived from the peripheral library. The prototypes for these functions are
as below.

#i ncl ude <xc. h>
unsi gned char eepromread(unsigned char address);
voi d eeprom wite(unsigned char address, unsigned char val ue);

These functions test and wait for any concurrent writes to EEPROM to conclude before
performing the required operation. The eepr om wri t e() function will initiate the pro-
cess of writing to EEPROM and this process will not have completed by the time that
eeprom write() returns. The new data written to EEPROM will become valid at a
later time. See your device data sheet for exact information about EEPROM on your
target device.

It may also be convenient to use the preprocessor symbol, EEPROMSI ZE, in conjunc-
tion with some of these access methods. This symbol defines the number of EEPROM
bytes available for the selected chip.

5553 EEPROM ACCESS MACROS

Macro version of the EEPROM functions are also provided. The PIC18 version of these
macros purely call the function equivalents. Those for other 8-bit PIC devices perform
similar operations to their function counterparts, with the exception of some timing
issues described below. Use the macro forms of these routines for faster execution and
to save a level of stack, but note that their repeated use will increase code size.

The usage of these macros for all devices is as follows.

EEPROM_READ(addr ess)
EEPROM WRI TE(addr ess, val ue)

The EEPROM_READ macro returns the byte read.

In the case of the baseline and mid-range macro EEPROM _REALX) , there is another
very important difference from the function version to note. Unlike eepr om r ead() ,
this macro does not wait for any concurrent EEPROM writes to complete before pro-
ceeding to select and read EEPROM. If it cannot be guaranteed that all writes to
EEPROM have completed at the time of calling EEPROM_READ() , the appropriate flag
should be polled prior to executing EEPROM _REALD) .

For example:
xc. h /1 wait for end-of-wite before EEPROM READ
whi | e(WR)
conti nue; /'l read from EEPROM at address

val ue = EEPROM READ(addr ess) ;

© 2012 Microchip Technology Inc. DS52053B-page 177

MPLAB® XC8 C Compiler User’s Guide

5.5.6 Variables in Registers

Allocating variables to registers, rather than to a memory location, can make code more
efficient. With MPLAB XC8, there is no direct control of placement of variables in reg-
isters. The r egi st er keyword (which can only be used with aut o variables) is silently
ignored and has no effect on memory allocation of variables.

There are very few registers available for caching of variables on PIC baseline and
mid-range devices, and as these registers must be frequently used by generated code
for other purposes, there is little advantage in using them. The cost involved in loading
variables into registers would far outweigh any advantage of accessing the register. At
present, code compiled for PIC18 devices also does not utilise registers other than that
described below.

Some arguments are passed to functions in the W register rather than in a memory
location; however, these values will typically be stored back to memory by code inside
the function so that W can be used by code associated with that function. See
Section 5.8.5 “Function Size Limits” for more information as to which parameter
variables may use registers.

55.7 Dynamic Memory Allocation

Dynamic memory allocation, (heap-based allocation using mal | oc, etc.) is not sup-
ported on any 8-bit device. This is due to the limited amount of data memory, and that
this memory is banked. The wasteful nature of dynamic memory allocation does not
suit itself to the 8-bit PIC device architectures.

5.5.8 Memory Models

MPLAB XC8 C Compiler does not use fixed memory models to alter allocation of vari-
ables to memory. Memory allocation is fully automatic and there are no memory model
controls.

DS52053B-page 178

© 2012 Microchip Technology Inc.

C Language Features

5.6 OPERATORS AND STATEMENTS

The MPLAB XC8 C Compiler supports all the ANSI operators. The exact results of
some of these are implementation defined. Implementation-defined behavior is fully
documented in Appendix C. “Implementation-Defined Behavior”. The following
sections illustrate code operations that are often misunderstood as well as additional
operations that the compiler is capable of performing.

5.6.1 Integral Promotion

When there is more than one operand to an operator, they typically must be of exactly
the same type. The compiler will automatically convert the operands, if necessary, so
they do have the same type. The conversion is to a “larger” type so there is no loss of
information; however, the change in type can cause different code be ha vi our to what
is sometimes expected. These form the standard type conversions.

Prior to these type conversions, some operands are unconditionally converted to a
larger type, even if both operands to an operator have the same type. This conversion
is called integral promotion and is part of Standard C be ha vi our. The compiler per-
forms these integral promotions where required, and there are no options that can con-
trol or disable this operation. If you are not aware that the type has changed, the results
of some expressions are not what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, si ghed or
unsi gned varieties of char, short i nt or bit-field types to either si gned i nt or
unsi gned i nt . If the result of the conversion can be represented by an si gned i nt ,
then that is the destination type, otherwise the conversion is to unsi gned i nt.
Consider the following example.
unsi gned char count, a=0, b=50;
if(a- b < 10)

count ++;
The unsi gned char resultofa - b is 206 (which is not less than 10), but both a and
b are converted to si gned i nt via integral promotion before the subtraction takes

place. The result of the subtraction with these data types is -50 (which is less than 10)
and hence the body of the i f () statement is executed.

If the result of the subtraction is to be an unsi gned quantity, then apply a cast. For
example:
if((unsigned int)(a - b) < 10)

count ++;

The comparison is then done using unsi gned i nt, in this case, and the body of the
i f () would not be executed.

Another problem that frequently occurs is with the bitwise compliment operator, ~. This
operator toggles each bit within a value. Consider the following code.

unsi gned char count, c;
c = 0x55;
if(~c == O0xAA)

count ++;
If c contains the value 0x55, it often assumed that ~c will produce OxAA; however, the
result is OXFFAA and so the comparison in the above example would fail. The compiler
may be able to issue a mismatched comparison error to this effect in some circum-
stances. Again, a cast could be used to change this behavior.

© 2012 Microchip Technology Inc. DS52053B-page 179

MPLAB® XC8 C Compiler User’s Guide

The consequence of integral promotion as illustrated above is that operations are not
performed with char -type operands, but with i nt -type operands. However, there are
circumstances when the result of an operation is identical regardless of whether the
operands are of type char ori nt . In these cases, the compiler will not perform the
integral promotion so as to increase the code efficiency. Consider this example.

unsi gned char a, b, c;

a=>b+c

Strictly speaking, this statement requires that the values of b and ¢ should be promoted
tounsi gned i nt, the addition performed, the result of the addition cast to the type of
a, and then the assignment can take place. Even if the result of the unsi gned i nt
addition of the promoted values of b and ¢ was different to the result of the unsi gned
char addition of these values without promotion, after the unsi gned i nt result was
converted back to unsi gned char, the final result would be the same. If an 8-bit addi-
tion is more efficient than a 16-bit addition, the compiler will encode the former.

If, in the above example, the type of a was unsi gned i nt, then integral promotion
would have to be performed to comply with the ANSI C standard.

5.6.2 Rotation

The C language does not specify a rotate operator; however, it does allow shifts. The
compiler will detect expressions that implement rotate operations using shift and logical
operators and compile them efficiently.

For the following code:
c=(c<<1) | (c>>7);

if c isunsi gned and non-vol ati | e, the compiler will detect that the intended
operation is a rotate left of 1 bit and will encode the output using the PIC MCU rotate
instructions. A rotate left of 2 bits would be implemented with code like:

c=(c<<2) | (c>>6);

This code optimization will also work for integral types larger than a char . If the opti-
mization cannot be applied, or this code is ported to another compiler, the rotate will be
implemented, but typically with shifts and a bitwise OR operation.

5.6.3 Switch Statements

The compiler may encode swi t ch statements using one of several strategies. By
default, the compiler chooses a strategy based on the case values that are used inside
the swi t ch statement. Each swi t ch statement is assigned its strategy independently.

The type of strategy can be indicated by using the #pr agnma swi t ch directive. See
Section 5.14.4.10 “The #pragma switch Directive”, which also lists the available
strategy types. There may be more than one strategy associated with each type.

There is information printed in the assembly list file for each swi t ch statement detail-
ing the value being switched and the case values listed. See Section 6.6.4 “Switch
Statement Information”.

DS52053B-page 180 © 2012 Microchip Technology Inc.

C Language Features

5.7 REGISTER USAGE

The assembly generated from C source code by the compiler will use certain registers
in the PIC MCU register set. Most importantly, the compiler assumes that nothing other
than code it generates can alter the contents of these registers. So if compiler-gener-
ated assembly code loads a register with a value and no subsequent code requires this
register, the compiler will assume that the contents of the register are still valid later in
the output sequence.

If any of the applicable registers listed are used by interrupt code, they will be saved
and restored when an interrupt occurs, either in hardware or software. See
Section 5.9.3 “Context Switching”.

The registers that are special and which are used by the compiler are listed in Table 5-9

TABLE 5-9: REGISTERS USED BY THE COMPILER

Applicable devices Register name

All 8-bit devices w

All 8-bit devices STATUS

All mid-range devices PCLATH

All PIC18 devices PCLATH, PCLATU

Enhanced mid-range and PIC18 devices BSR

Non-enhanced mid-range devices FSR

Enhanced mid-range and PIC18 devices FSROL, FSROH, FSR1L, FSR1H

All PIC18 devices FSR2L, FSR2H

All PIC18 devices TBLPTRL, TBLPTRH, TBLPTRU, TAB-
LAT

All PIC18 devices PRODL, PRODH

The state of these registers must never be changed directly by C code, or by any
assembly code inline with C code. The following example shows a C statement and
inline assembly that violates these rules and changes the ZERO bit in the STATUS reg-
ister.

#i ncl ude <xc. h>

voi d get | nput (voi d)

{
ZERO = 0x1; // do not wite using C code
¢ = read();
#asm
#i ncl ude <caspi c. h>
bcf ZERO bit ; do not wite using inline assenbly code
#endasm
process(c);
}

MPLAB XC8 is unable to interpret the register usage of inline assembly code that is
encountered in C code. Nor does it associate a variable mapped over an SFR to the
actual register itself. Writing to an SFR register using either of these two methods will
not flag the register as having changed and may lead to code failure.

© 2012 Microchip Technology Inc. DS52053B-page 181

MPLAB® XC8 C Compiler User’s Guide

5.8 FUNCTIONS

Functions may be written in the usual way in accordance with the C language. Imple-
mentation and special features associated with functions are discussed in the following
sections.

5.8.1 Function Specifiers

Functions may, in the usual way, use the standard specifier st at i c¢. A function defined
using the st at i ¢ specifier only affects the scope of the function; i.e., limits the places
in the source code where the function may be called. Functions that are st ati ¢ may
only be directly called from code in the file in which the function is defined. The equiv-
alent symbol used in assembly code to represent the function may change it the func-
tionis stati c, see 5.12.3 “Interaction Between Assembly and C Code”. This
specifier does not change the way the function is encoded.

Non-standard qualifiers are discussed below.

5.8.1.1 INTERRUPT SPECIFIER

The i nt er r upt specifier indicates that the function is an interrupt service routine and
that it is to be encoded specially to suit this task. Interrupt functions are described in
detail in 5.9.1 “Writing an Interrupt Service Routine”.

5.8.1.2 INLINE SPECIFIER

The i nl i ne function specifier is a recommendation that calls to the specified function
be as fast as possible. The compiler may be able to inline the body of the function spec-
ified if certain conditions are met.

The following is an example of a function which has been made a candidate for inlining.

inline int conbine(int x, int y) {
return 2*x-vy;

}

All function calls to any function that was inlined by the compiler will be encoded as if
the call was replaced with the body of the called function. This is performed at the
assembly code level, Inlining will only take place if the assembly optimizers are
enabled. The function itself may still be encoded by the compiler even if it is inlined.

If inlining takes place, this will increase the program’s execution speed, since the call
and return sequences associated with the call will be eliminated. It will also reduce the
hardware stack usage as no call instruction is actually executed. Any stack reduction
is not reflected in the call graphs shown in the assembly list file as this file is generated
before inlining takes place.

If inlining takes place, code size may be reduced if the assembly code associated with
the body of the inlined function is very small and the function itself is not output. Code
size will increase if the body of the inlined function is larger than the call/return
sequence it replaces and that function is called more than once. You should only con-
sider this specifier for functions which generate small amounts of assembly code. Note
that the amount of C code in the body of a function is not a good indicator of the size
of the assembly code which it generates (see Section 3.6.13 “How Can | Tell How
Big a Function Is?”).

A function may not be inlined if it itself contains inline assembly. If the assembly for the
function contains certain assembly sequences, this may also prevent inlining of the
function. A warning will be generated if the function references st at i ¢ objects, to
comply with the ANSI Standard. A warning is also issued if it is not inlined successfully.
Your code should not make any assumption about whether inlining was successful and
which assembly code associated with the function is being executed.

DS52053B-page 182

© 2012 Microchip Technology Inc.

C Language Features

This specifier performs the same task as the #pr agna i nl i ne directive, see
Section 5.14.4.4 “ The #pragma Intrinsic Directive”.

5.8.2 External Functions

If a call to a function that is defined outside the program C source code is required (it
may be part of code compiled separately, e.g., the bootloader, or in assembly code),
you will need to provide a declaration of the function so that the compiler knows how to
encode the call.

If this function takes arguments or returns a value, the compiler may use a symbol to
represent the memory locations used to store these values, see

Section 5.8.6 “Function Parameters” and Section 5.8.7 “Function Return Values”
to determine if a register or memory locations are used in this transfer. Usually, the
compiler defines this symbol when it encodes the C function, but if the function is exter-
nal and not encoded by the compiler, then the symbol value must be manually defined.
If an argument or return value is used and this will be stored in memory, the corre-
sponding symbol must be defined by your code and assigned the value of the appro-
priate memory location.

The value can be determined from the map file of the external build, which compiled
the function, or from the assembly code. If the function was written in C, look for the
symbol ?_f uncNane, where f uncNarme is the name of the function. It can be defined
in the program which makes the call via a simple EQU directive in assembler. For
example, the following snippet of code could be placed in the C source:

#asm

GLOBAL ?_ext ReadFn
?_ext ReadFn EQU 0x20
#endasm

Alternatively, the assembly code could be contained directly in an assembly module.
This defines the base address of the parameter area for an extern function ext ReadFn
to be 0x20.

If this symbol is not defined, the compiler will issue an undefined symbol error. This
error can be used to verify the name being used by the compiler to encode the call, if
required.

It is not recommended to call the function indirectly by casting an integer to a function
pointer, but in such a circumstance, the compiler will use the value of the constant in
the symbol name, for example calling a function at address 0x200 will require the def-
inition of the symbol ?0x200 to be the location of the parameter/return value location
for the function. For example:

#asm

GLOBAL ?0x200
?0x200 EQU 0x55
#endasm

Note that the return value of a function (if used) shares the same locations assigned to
any parameters to that function and both use the same symbol.

5.8.3 Allocation of Executable Code

Code associated with functions is always placed in the program memory of the target
device.

On baseline and mid-range devices, the program memory is paged (compare: banking
used in the data memory space). This memory is still sequential (addresses are con-
tiguous across a page boundary), but the paging means that any call or jump from code

© 2012 Microchip Technology Inc. DS52053B-page 183

MPLAB® XC8 C Compiler User’s Guide

in one page to a label in another must use a longer sequence of instructions to accom-
plish this. See your device data sheet for more information on the program memory and
instruction set.

PIC18 devices do not implement any program memory paging. The CALL and GOTO
instruction are two-word instructions and their destinations are not limited. The relative
branch instructions have a limited range, but this is not based on any paging boundar-
ies.

The generated code associated with each function is initially placed in its own psect by
the compiler, see Section 5.15.1 “Program Sections”. These psects have names
such ast ext n, where n is a number, e.g., t ext 98. However, psects may be merged
later in the compilation process so that more than one function may contribute to a
psect.

When the program memory us paged, functions within the same psect can use a
shorter form of call and jump to labels so it is advantageous to merge the code for as
many functions into the same psect. These text psects are linked anywhere in the pro-
gram memory (see 5.10 “Main, Runtime Startup and Reset”).

If the size of a psect that holds the code associated with a function exceeds the size of
a page, it may be split by the assembler optimizer. A split psect will have a name of the
formt ext n_spl it _s. So, for example, if the t ext 102 psect exceeds the size of a
page, it may be splitintoat ext 102_split_landatext102_split_2 psect. This
process is fully automatic, but you should be aware that if the code associated with a
function does become larger than one page in size, the efficiency of that code may drop
fractionally due to any longer jump and call instruction sequences being used to trans-
fer control to code in other pages.

The base name of each psect category is tabulated below. A full list of all pro-
gram-memory psects psect names are listed in Section 5.15.2.1 “Program Space
Psects”.

mai nt ext The generated code associated with the special function, nai n, is placed
in this psect. Some optimizations and features are not applied to this psect.

t ext n These psects (where nis a decimal number) contain all other executable code
that does not require a special link location.

5.8.4 Changing the Default Function Allocation

If you only intend to prevent functions from using one or more program memory loca-
tions so that you can use those locations for some other purpose, you are best reserv-
ing the memory using the memory adjust options. See Section 4.8.49 “--ROM: Adjust
ROM Ranges” for information on how to do this.

The assembly code associated with a C function can be placed at an absolute address.
This can be accomplished by using an @ addr ess construct in a similar fashion to
that used with absolute variables. Such functions are called absolute functions.

The following example of an absolute function will place the function at address 400h:

int mach_status(int nmode) @ 0x400
{

[* function body */
}

If you check the assembly list file you will see the function label and the first assembly
instruction associated with the function located at 0x400. You can use either the
assembly list file (see 6.5 “Assembly-Level Optimizations”) or the map file (see
7.4 “Map Files”) to confirm that the function was moved as you expect.

DS52053B-page 184

© 2012 Microchip Technology Inc.

C Language Features

If this construct is used with interrupt functions it will only affect the position of the code
associated with the interrupt function body. The interrupt context switch code that pre-
cedes the function code will not be relocated as it must be linked to the interrupt vector.
See also Section4.8.22 “--CODEOFFSET: Offset Program Code to Address” for
information on how to move Reset and interrupt vector locations, which may be useful
for designing applications such as bootloaders.

Unlike absolute variables, the generated code associated with absolute functions is still
placed in a psect, but the psect is dedicated to that function only. The psect name has
the form below. A full list of all psect names are listed in Section 5.10 “Main, Runtime
Startup and Reset”.

xxx_t ext Defines the psect for a function that has been made absolute; i.e., placed
at an address. xxx will be the assembly symbol associated with the function.
For example if the function r v() is made absolute, code associated with it
will appear in the psect called _r v_t ext .

Functions can also be placed at specific positions by using the psect pragma, see
Section 5.14.4.8 “The #pragma psect Directive”. The decision whether functions
should be positioned this way or using absolute functions should be based on the
location requirements.

Using absolute functions is the easiest method, but only allows placement at an
address which must be known prior to compilation. The psect pragma is more com-
plex, but offers all the flexibility of the linker to position the new psect into memory. For
example, you can specify that functions reside at a fixed address, or that they be placed
after other psects, or that the they be placed anywhere in a compiler-defined or
user-defined range of addresses.

5.8.5 Function Size Limits

For all devices, the code generated for a function is only limited only by the available
program memory. Functions may become larger than one page in size on paged
devices; however, these functions may not be as efficient due to longer call sequences
to jump to and call destinations in other pages. See 5.8.3 “Allocation of Executable
Code” for more details.

5.8.6 Function Parameters

MPLAB XC8 uses a fixed convention to pass arguments to a function. The method
used to pass the arguments depends on the size and number of arguments involved.

Note: The names “argument” and “parameter” are often used interchangeably,
but typically an argument is the actual value that is passed to the function
and a parameter is the variable defined by the function to store the
argument.

The compiler will either pass arguments in the W register, or in the called function’s
parameter memory in its auto-parameter block (APB). If the first parameter is one byte
in size, it is passed in the W register. All other parameters are passed in the APB. This
applies to basic types and to aggregate types, like structures.

The parameters are grouped along with the function’s aut o variables in the APB and
are placed in the compiled stack. See Section 5.5.2.2.1 “Compiled Stack Operation”
for detailed information on the compiled stack. The parameter variables will be refer-

enced as an offset from the symbol ?_f unct i on, where f uncti on is the name of the
function in which the parameter is defined (i.e., the function that is to be called).

© 2012 Microchip Technology Inc. DS52053B-page 185

MPLAB® XC8 C Compiler User’s Guide

Unlike aut o variables, parameter variables are allocated memory strictly in the order
in which they appear in the function’s prototype. This means that the parameters will

always be placed in the same memory bank. The aut o variables for a function can be
allocated across multiple banks and in any order.

The parameters for functions that take a variable argument list (defined using an ellipsis
in the prototype and which are called non-prototyped parameters) are placed in the
parameter memory, along with named parameters.

Take, for example, the following ANSI-style function.
void test(char a, int b);

The function t est () will receive the parameter b in its function auto-parameter block
and a in the Wregister. A call to this function:

test(xyz, 8);
would generate code similar to:

MOVLW 08h ; nmove literal Ox8 into...

MOVWF ? _test ; the auto-paraneter menory

CLRF ? test+l ; locations for the 16-bit paraneter
MOVF _Xyz,w ; nmove xyz into the Wregister

CALL (_test)

In this example, the parameter b is held in the memory locations ?_t est (LSB) and
?_test+1 (MSB).

The exact code used to call a function, or the code used to access a parameters from
within a function, can always be examined in the assembly list file. See

Section 4.8.17 “--ASMLIST: Generate Assembler List Files” for the option that
generates this file. This is useful if you are writing an assembly routine that must call a
function with parameters, or accept arguments when it is called. The above example
does not consider data memory banking or program memory paging, which may
require additional instructions.

DS52053B-page 186

© 2012 Microchip Technology Inc.

C Language Features

5.8.7 Function Return Values

Function return values are passed to the calling function using either the Wregister, or
the function’s parameter memory in its auto-parameter block. Having return values also
located in the same memory as that used by the parameters can reduce the code size
for functions that return a modified copy of their parameter.

Eight-bit values are returned from a function in the W register. Values larger than a byte
are returned in the function’s parameter memory area, with the least significant word
(Isw) in the lowest memory location.

For example, the function:
int return_16(void)

{

}
will exit with the code similar to:

MOVLW 34h

MOWWF (?_return_16)
MOVLW 12h

MOWAF (?_return_16)+1
RETURN

return 0x1234;

For PIC18 targets returning values greater than 4 bytes in size, the address of the
parameter area is also placed in the FSRO register.

5.8.8 Calling Functions

All 8-bit devices use a hardware stack for function return addresses. The depth of this
stack varies from device to device.

Typically, CALL assembly instructions are used to transfer control to a C function when
itis called. Each function calls uses one level of stack. This stack level is freed after the
called routine executes a RETURN instruction. The stack usage grows if a called func-
tion calls another before returning. If the hardware stack overflows, function return
addresses will be destroyed and the code will eventually fail.

The st ackcal | suboption to the - - RUNTI ME option controls how the compiler
behaves when the compiler detects that the hardware stack is about to overflow due to
too many nested calls. See Section 4.8.50 “--RUNTIME: Specify Runtime
Environment” for details on this option. If this suboption is disabled (the default state),
where the depth of the stack will be exceeded by a call, the compiler will issue a
warning to indicate that this is the case. For PIC18 devices, this is the only way in which
calls are made, but for other 8-bit devices, the compiler can swap to an alternate way
of making calls, as detailed below.

Ifthe st ackcal | suboption is enabled, the compiler will, instead of issuing a warning,
automatically swap to using a method that involves the use of a lookup table and which
does not require use of the hardware stack. This feature is not available for PIC18
devices.

When the lookup method is being employed, a function is reached by a jump (not a call)
directly to its address. Before this is done the address of a special “return” instruction
(implemented as a jump instruction) is stored in a temporary location inside the called
function. This return instruction will be able to return control back to the calling function.

This means of calling functions allows functions to be nested deeply without overflow-
ing the limited stack available on baseline and mid-range devices; however, it does
come at the expense of memory and program speed.

© 2012 Microchip Technology Inc. DS52053B-page 187

MPLAB® XC8 C Compiler User’s Guide

5.8.8.1 BANK SELECTION WITHIN FUNCTIONS

A function can, and may, return with any RAM bank selected. See
Section 5.5.1 “Address Spaces” for more information on RAM banks.

The compiler tracks the bank selections made in the generated code associated with
each function, even across function calls to other functions. If the bank that is selected
when a function returns can be determined, the compiler will use this information to try
to remove redundant bank selection instructions which might otherwise be inserted into
the generated code.

The compiler will not be able to track the bank selected by routines written in assembly,
even if they are called from C code. The compiler will make no assumptions about the
selected bank when such routines return.

The “Tracked objects” section associated with each function and which is shown in the
assembly list file relates to this bank tracking mechanism. See 6.5 “Assembly-Level
Optimizations” for more information of the content of these files.

DS52053B-page 188

© 2012 Microchip Technology Inc.

C Language Features

5.9 INTERRUPTS

The MPLAB XC8 compiler incorporates features allowing interrupts to be fully handled
from C code. Interrupt functions are often called Interrupt Service Routines, or ISRs.

Note: Baseline devices do not utilize interrupts and so the following sections are
only applicable for mid-range, Enhanced mid-range and PIC18 devices.

There is only one interrupt vector on mid-range and Enhanced mid-range devices.
Regardless of the source of the interrupt, the device will vector to one specific location
in program memory and execution continues from that address. This address is a attri-
bute of the device and cannot be changed.

Each mid-range device interrupt source typically has a control flag in an SFR which can
disable that interrupt source. In addition there is a global interrupt enable flag that can
disable all interrupts sources and ensure that an interrupt can never occur. There is no
priority of interrupt sources. Check your device data sheet for full information how your
device handles interrupts.

PI1C18 devices have two separate interrupt vectors and a priority scheme to dictate
which interrupt code is executed. The two interrupts are designated as low and high
priority. Peripherals are associated one of the interrupt priorities (vectors) through set-
tings in the peripheral’'s SFRs.

Individual interrupt sources can be disabled via a control flag in an SFR associated with
that interrupt source. In addition to the global interrupt enable flag, there are other flags
that can disable each interrupt priority.

Interrupt code is the name given to any code that executes as a result of an interrupt
occurring, including functions called from the ISR and library code. Interrupt code com-
pletes at the point where the corresponding return from interrupt instruction is exe-
cuted. This contrasts with main-line code, which, for a freestanding application, is
usually the main part of the program that executes after Reset.

5.9.1 Writing an Interrupt Service Routine

The function qualifier i nt er r upt may be applied to a C function definition so that it
will be executed once the interrupt occurs. The compiler will process the i nt er r upt
function differently to any other functions, generating code to save and restore any reg-
isters used and return using a special instruction.

If the xc8 option - - STRI CT is used, the i nt err upt keyword becomes
__interrupt.

An interrupt function must be declared as type voi d i nt errupt and may not have
parameters. This is the only function prototype that makes sense for an interrupt func-
tion since they are never directly called in the source code.

On PIC18 devices, interrupt functions default to being high priority. To create a low-pri-
ority interrupt function, use the qualifier | ow_pri ori ty in addition to i nt er r upt in
the function definition.

Interrupt functions must not be called directly from C code (due to the different return
instruction that is used), but they themselves may call other functions, both
user-defined and library functions.

There may be many sources of interrupt that share the same interrupt vector, but there
is only ever one interrupt function associated with each vector. The interrupt function

must then contain code to determine the source of the interrupt before proceeding. An
error will result if there are more interrupt functions than interrupt vectors in a program.

© 2012 Microchip Technology Inc. DS52053B-page 189

MPLAB® XC8 C Compiler User’s Guide

An example of an interrupt function is shown here.
int tick_count;

void interrupt tc_int(void)

{
if (TMROIE && TMROIF) {
TMROI F=0;
++ti ck_count;
return;
}
/] process other interrupt sources here, if required
}

Code generated by the compiler will be placed at the interrupt vector address which will
execute this function after any context switch that is required.

Notice that the code in the interrupt function checks for the source of the interrupt, in
this case a timer, by looking at the interrupt flag bit (TMROI E) and the interrupt flag bit
(TMROI F). Checking the interrupt enable flag is required since interrupt flags associ-
ated with a peripheral may be asserted even if the peripheral is not configured to
generate an interrupt.

The following is an example of a low priority interrupt function that could be written for
PI1C18 devices.
void interrupt lowpriority tc_clr(void) {
if (TMRLIE & TMRLIF) {
TMR1I F=0;
tick_count = 0;
return;

}

Il process any other low priority sources here

}
5.9.2 Specifying the Interrupt Vector

The interrupt function(s) cannot be changed at runtime. That is, you cannot have alter-
nate interrupt functions and select which will be active during program execution. An
error will result if there are more interrupt functions than interrupt vectors in a program.

DS52053B-page 190

© 2012 Microchip Technology Inc.

C Language Features

5.9.3 Context Switching

5.9.3.1 CONTEXT SAVING ON INTERRUPTS

Some registers are automatically saved by the hardware when an interrupt occurs. Any
registers or compiler temporary objects used by the interrupt function, other than those
saved by the hardware, must be saved in code generated by the compiler. This is the
context save, or context switch code.

See Section 5.7 “Register Usage” for the registers that must be saved and restored
either by hardware or software when an interrupt occurs.

Enhanced mid-range PIC devices save the W, STATUS, BSR and FSRx registers in
hardware (using special shadow registers) and hence these registers do not need to
be saved by software. The only register that may need to be saved is BTEMP1!, a com-
piler temporary location that acts like a pseudo register. This makes interrupt functions
on Enhanced mid-range PIC devices very fast and efficient.

Other mid-range PIC processors only save the entire PC (excluding the PCLATH reg-
ister) when an interrupt occurs. The W, STATUS, FSR and PCLATH registers and the
BTEMP1 pseudo register must be saved by code produced by the compiler, if required.

By default, the PIC18 high-priority interrupt function will utilize its internal shadow reg-
ister to save the W, STATUS and BSR registers. All other used registers are saved in
software. Note that for some older devices, the compiler will not use the shadow regis-
ters if compiling for the MPLAB ICD debugger, as the debugger itself utilizes these
shadow registers. Some errata workarounds also prevent the use of the shadow
registers see Section 4.8.27 “--ERRATA: Specify Errata Workarounds”.

For the low priority PIC18 interrupts, or when the shadow registers cannot be used, all
registers that has been used by the interrupt code will be saved by software.

The compiler determines exactly which registers and objects are used by an interrupt
function, or any of the functions that it calls (based on the call graph generated by the
compiler), and saves these appropriately.

Assembly code placed inline within the interrupt function is not scanned for register
usage. Thus, if you include inline assembly code into an interrupt function, you may
have to add extra assembly code to save and restore any registers or locations used.
The same is true for any assembly routines called by the interrupt code.

If the W regqister is to be saved by the compiler, it may be stored to memory reserved
in the common RAM. If the device for which the code is written does not have common
memory, a byte is reserved in all RAM banks for the storage location for W register.

Most registers to be saved are allocated memory in the interrupt function’s aut o area.
They can be treated like any other aut o variable and use the same assembly symbols.
On mid-range devices, the W register is stored in BTEMPO, a pseudo register.

5.9.3.2 CONTEXT RESTORATION

Any objects saved by software are automatically restored by software before the inter-
rupt function returns. The order of restoration is the reverse to that used when context
is saved.

1. The BTEMP register is a memory location allocated by the compiler, but it is treated like a register for
code generation purposes. It is not used by all devices.

© 2012 Microchip Technology Inc. DS52053B-page 191

MPLAB® XC8 C Compiler User’s Guide

5.9.4 Enabling Interrupts

Two macros are available, once you have included <xc. h>, which control the masking
of all available interrupts. These macros are ei (), which enable or unmask all
interrupts, and di (), which disable or mask all interrupts.

On all devices, they affect the GIE bit in the INTCON register. These macros should be
used once the appropriate interrupt enable bits for the interrupts that are required in a
program have been enabled.

For example:

ADIE =1; [// ADinterrupts will be used
PEIE = 1; // all peripheral interrupts are enabl ed

ei(); /1 enable all interrupts
I
di(); /] disable all interrupts

Note: Never re-enable interrupts inside the interrupt function itself. Interrupts are
automatically re-enabled by hardware on execution of the RETFI E instruc-
tion. Re-enabling interrupts inside an interrupt function may result in code
failure.

5.9.5 Function Duplication

It is assumed by the compiler that an interrupt may occur at any time. As all functions
are not reentrant (because of the dependance on the compiled stack for local objects,
see Section 5.5.2.2.1 “Compiled Stack Operation”), if a function appears to be

called by ani nt er r upt function and by main-line code this could lead to code failure.

MPLAB XC8 has a feature which will duplicate the output associated with any function
called from more than one call tree in the program’s call graph. There will be one call
tree associated with main-line code, and one tree for the i nt er r upt function, if
defined.

Main-line code will call the original function’s output, and the interrupt will call the dupli-
cated function’s output. The duplication takes place only in the called function’s output;
there is no duplication of the C source code itself. The duplicated code and data uses
different symbols and are allocated different memory, so are fully independent.

This is similar to the process you would need to undertake if this feature was not imple-
mented in the compiler: the C function could be duplicated by hand, given different
names and one called from main-line code; the other from the interrupt function. How-
ever, you would have to maintain both functions, and the code would need to be
reverted if it was ported to a compiler which did support reentrancy.

The compiler-generated duplicate will have unique identifiers for the assembly symbols
used within it. The identifiers consists of the same name used in the original output pre-
fixed with i 1. Duplicated PIC18 functions use the prefixesi 1 and i 2 for the low- and
high-priority interrupts, respectively.

The output of the function called from main-line code will not use any prefixes and the
assembly names will be those normally used.

To illustrate, in a program the function mai n calls a function called i nput . This function
is also called by an i nt er r upt function.

DS52053B-page 192 © 2012 Microchip Technology Inc.

C Language Features

Examination of the assembly list file will show assembly code for both the original and
duplicate function outputs. The output corresponding to the C function i nput () will
use the assembly label _i nput . The corresponding label used by the duplicate func-
tionwillbei 1_i nput . If the original function makes reference to a temporary variable,
the generated output will use the symbol ??_i nput , compared to ??i 1_i nput for the
duplicate output. Even local labels within the function output will be duplicated in the
same way. The call graph, in the assembly list file, will show the calls made to both of
these functions as if they were independently written. These symbols will also be seen
in the map file symbol table.

This feature allows the programmer to use the same source code with compilers that
use either reentrant or non-reentrant models. It does not handle cases where functions
are called recursively.

Code associated with library functions are duplicated in the same way. This also
applies to implicitly called library routines, such as those that perform division or
floating-point operations associated with C operators.

5.9.5.1 DISABLING DUPLICATION

The automatic duplication of the function may be inhibited by the use of a special
pragma.

This should only be done if the source code guarantees that an interrupt cannot occur
while the function is being called from any main-line code. Typically this would be
achieved by disabling interrupts before calling the function. It is not sufficient to disable
the interrupts inside the function after it has been called; if an interrupt occurs when
executing the function, the code may fail. See Section 5.9.4 “Enabling Interrupts” for
more information on how interrupts may be disabled.

The pragma is:
#pragma interrupt_level 1

The pragma should be placed before the definition of the function that is not to be dupli-
cated. The pragma will only affect the first function whose definition follows.

For example, if the function r ead is only ever called from main-line code when the
interrupts are disabled, then duplication of the function can be prevented if it is also
called from an interrupt function as follows.

#pragma interrupt_level 1
int read(char device)

{
}

In main-line code, this function would typically be called as follows:

di(); // turn off interrupts
read(I N_CH1);
ei(); // re-enable interrupts

11

The level value specified indicates for which interrupt the function will not be duplicated.
For mid-range devices, the level should always be 1; for PIC18 devices it can be 1 or
2 for the low- or high-priority interrupt functions, respectively. To disable duplication for
both interrupt priorities, use the pragma twice to specify both levels 1 and 2. The fol-

lowing function will not be duplicated if it is also called from the low- and high-priority
interrupt functions.

#pragma interrupt_level 1

#pragma i nterrupt_level 2

int timestwo(int a) {
return a * 2;

}

© 2012 Microchip Technology Inc. DS52053B-page 193

MPLAB® XC8 C Compiler User’s Guide

5.10 MAIN, RUNTIME STARTUP AND RESET

The identifier mai n is special. You must always have one and only one function called
mai n() in your programs. This is the first function to execute in your program.

Code associated with mai n() ; however, is not the first code to execute after Reset.
Additional code provided by the compiler, and known as the runtime startup code, is
executed first and is responsible for transferring control to the mai n() function. The
actions and control of this code is described in the following sections.

The compiler inserts special code at the end of mai n() which is executed if this func-
tion ends, i.e. ar et ur n statement inside mai n() is executed, or code execution
reaches the mai n() 's terminating right brace. This special code causes execution to
jump to address 0, the Reset vector for all 8-bit PIC devices. This essentially performs
a software Reset. Note that the state of registers after a software Reset may be differ-
ent to that after a hardware Reset.

Itis recommended that the mai n() function does not end. Add a loop construct (such
as awhi | e(1)) that will never terminate either around your code in mai n() or at the
end of your code, so that execution of the function will never terminate. For example,

voi d mai n(voi d)

{
/1 your code goes here
/1 finished that, now just wait for interrupts
whil e(1)
conti nue;
}

5.10.1 Runtime Startup Code

A C program requires certain objects to be initialized and the device to be in a particular
state before it can begin execution of its function mai n() . It is the job of the runtime
startup code to perform these tasks, specifically (and in no particular order):

« Initialization of global variables assigned a value when defined

* Clearing of non-initialized global variables

» General setup of registers or device state

Rather than the traditional method of linking in a generic, precompiled routine, MPLAB
XC8 uses a more efficient method which actually determines what runtime startup code
is required from the user’s program. Details of the files used and how the process can

be controlled are described in Section 4.4.2 “ Startup and Initialization”. The follow-
ing sections detail exactly what the runtime startup code actually does.

The runtime startup code is executed before mai n(), but If you require any special ini-
tialization to be performed immediately after Reset, you should use power-up feature
described later in Section 5.10.2 “The Powerup Routine”.

The following table lists the significant assembly labels used by the startup and pow-
erup code.

TABLE 5-10: SIGNIFICANT ASSEMBLY LABELS

Label Location
reset_vec At the Reset vector location (0x0)
power up The beginning of the powerup routine, if used
start The beginning of the runtime startup code, in st art up. as
start_initialization |Thebeginning of the C initialization startup code, in the C
output code.

DS52053B-page 194 © 2012 Microchip Technology Inc.

C Language Features

5.10.1.1 INITIALIZATION OF OBJECTS

One task of the runtime startup code is to ensure that any initialized variables contain
their initial value before the program begins execution. Initialized variables are those
which are not aut o objects and which are assigned an initial value in their definition,
for example i nput in the following example.

int input = 88;

voi d mai n(void) {

Such initialized objects have two components: their initial value (0x0088 in the above
example) stored in program memory (i.e., placed in the HEX file), and space for the
variable reserved in RAM it will reside and be accessed during program execution
(runtime).

The psects used for storing these components are described in
Section 5.15.2 “Compiler-Generated Psects”.

The runtime startup code will copy all the blocks of initial values from program memory
to RAM so that the variables will contain the correct values before mai n() is executed.
This action can be omitted by disabling the i ni t suboption of - - RUNTI ME. For exam-
ple:

--RUNTI ME=defaul t,-init

With this part of the runtime startup code absent, the contents of initialized variables
will be unpredictable when the program begins execution. Code relying on variables
containing their initial value will fail.

Since aut o objects are dynamically created, they require code to be positioned in the
function in which they are defined to perform their initialization. It is possible that the
initial value of an aut o object may change on each instance of the function and so the
initial values cannot be stored in program memory and copied. As a result, initialized
aut o objects are not considered by the runtime startup code but are instead initialized
by assembly code in each function output.

Note: Initialized aut o variables can impact on code performance, particularly if
the objects are large in size. Consider using global or st at i ¢ objects
instead.

Variables whose contents should be preserved over a Reset, or even power off, should
be qualified with the per si st ent qualifier, see Section 5.4.8.1 “Persistent Type
Qualifier”. Such variables are linked at a different area of memory and are not altered
by the runtime startup code in any way.

If objects are initialized, the runtime startup code which performs this will destroy the
contents of the STATUS register. With some devices, the TO and PD bits in this register
are required to determine the cause of Reset. You can choose to have a copy of this
register taken so that it can later be examined. See Section 5.10.1.4 “STATUS
Register Preservation” for more information.

5.10.1.2 CLEARING OBJECTS
Those non-aut o objects which are not initialized must be cleared before execution of
the program begins. This task is also performed by the runtime startup code.

Uninitialized variables are those which are not aut o objects and which are not
assigned a value in their definition, for example out put in the following example.

i nt output;
void main(void) {...

Such uninitialized objects will only require space to be reserved in RAM where they will
reside and be accessed during program execution (runtime).

© 2012 Microchip Technology Inc. DS52053B-page 195

MPLAB® XC8 C Compiler User’s Guide

The psects used for storing these components are described in
Section 5.15.2 “Compiler-Generated Psects” and typically have a name based on
the initialism “bss” (Block Started by Symbol).

The runtime startup code will clear all the memory location occupied by uninitialized
variables so they will contain zero before mai n() is executed.

Variables whose contents should be preserved over a Reset should be qualified with
persi st ent. See Section 5.4.8.1 “Persistent Type Qualifier” for more information.
Such variables are linked at a different area of memory and are not altered by the
runtime startup code in any way.

If objects are initialized, the runtime startup code that performs this will destroy the con-
tents of the STATUS register. With some devices, the TO and PD bits in this register
are required to determine the cause of Reset. You can choose to have a copy of this
register taken so that it can later be examined. See Section 5.10.1.4 “STATUS Reg-
ister Preservation” for more information.

5.10.1.3 OSCILLATOR CALIBRATION

Some PIC devices come with an oscillator calibration constant which is pre-pro-
grammed into the device’s program memory. This constant can be written to the OSC-
CAL register to calibrate the internal RC oscillator, if required.

Code is automatically placed in the runtime startup code to load this calibration value,
see Section 5.3.9.1 “Oscillator Calibration Constants”.

DS52053B-page 196

© 2012 Microchip Technology Inc.

C Language Features

5.10.1.4 STATUS REGISTER PRESERVATION

The r eset bi t s suboption of the - - RUNTI ME option (see 4.8.50 “--RUNTIME: Spec-
ify Runtime Environment”) preserves some of the bits in the STATUS register before
being clobbered by the remainder of the runtime startup code. The state of these bits

can be examined after recovering from a Reset condition to determine the cause of the
Reset.

The entire STATUS register is saved to an assembly variable reset bi ts. This
variable can be accessed from C code using the declaration:

extern unsigned char __resetbits;

The compiler defines the assembly symbols __powerdownand ___ti meout torep-
resent the bit address of the Power-down and Time-out bits within the STATUS register
and can be used if required. These can be accessed from C code using the
declarations:

extern bit __powerdown;
extern bit __timeout;

In the above symbols, note that the C variables use two leading underscore characters,
and the assembly equivalent symbols use three. See Section 5.12.3.1 “Equivalent
Assembly Symbols” for more details of the mapping.

See Section 4.9 “MPLAB IDE V8 Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

5.10.2 The Powerup Routine

Some hardware configurations require special initialization, often within the first few
instruction cycles after Reset. To achieve this there is a hook to the Reset vector pro-
vided via the powerup routine.

This routine can be supplied in a user-defined assembler module that will be executed
immediately after Reset. A template powerup routine is provided in the file pow-

er up. as which is located in the sour ces directory of your compiler distribution. Refer
to comments in this file for more details.

The file should be copied to your working directory, modified and included into your
project as a source file. No special linker options or other code is required. The compiler
will detect if you have defined a powerup routine and will automatically use it, provided
the code in this routine is contained in a psect called power up.

For correct operation (when using the default compiler-generated runtime startup
code), the code must end with a GOTOinstruction to the label called st ar t . As with all
user-defined assembly code, any code inside this file must take into consideration pro-
gram memory paging and/or data memory banking, as well as any applicable errata
issues for the device you are using. The program’s entry point is already defined by the
runtime startup code, so this should not be specified in the power-up routine with the
END directive (if used). See Section 6.4.9.2 “END” for more information on this
assembler directive.

© 2012 Microchip Technology Inc. DS52053B-page 197

MPLAB® XC8 C Compiler User’s Guide

5.11 LIBRARY ROUTINES

5.11.0.1 USING LIBRARY ROUTINES

Library functions (and any associated variables) will be automatically linked into a pro-
gram once they have been referenced in your source code. The use of a function from
one library file will not include any other functions from that library. Only used library
functions will be linked into the program output and consume memory.

Your program will require declarations for any functions or symbols used from libraries.
These are contained in the standard C header (. h) files. Header files are not library
files and the two files types should not be confused. Library files contain precompiled
code, typically functions and variable definitions; the header files provide declarations
(as opposed to definitions) for functions, variables and types in the library files, as well
as other preprocessor macros.

In the following example, the definition for sqr t is not contained in source code, so the
compiler searches the libraries to find a definition there. Once found, it links in the
function for sqr t into your program.

#i ncl ude <mat h. h> /1 declare function prototype for sqgrt

voi d mai n(voi d)

{

doubl e i;

/] sqgrt referenced; sqrt will be linked in fromlibrary file
i = sqrt(23.5);
}

5.11.1 Theprintf Routine

The code associated with the pri nt f function is not precompiled into the library files.
The printf () function is generated from a special C template file that is customized
after analysis of the user’s C code. See Section “PRINTF, VPRINTF” for more infor-
mation on using the pri nt f library function.

The template file is found in the | i b directory of the compiler distribution and is called
dopr nt. c. It contains a minimal implementation of the pri nt f () function, but with
the more advanced features included as conditional code which can be utilized via
preprocessor macros that are defined when it (along with your code) is compiled.

The parser and code generator analyze the C source code, searching for calls to the
pri ntf function. For all calls, the placeholders that were specified in the pri ntf ()
format strings are collated to produce a list of the desired functionality of the final func-
tion. The dopr nt . c file is then preprocessed with the those macros specified by the
preliminary analysis, thus creating a custom pri nt f () function for the project being
compiled. After parsing, the p-code output derived from dopr nt . ¢ is then combined
with the remainder of the C program in the final code generation step.

For example, if a program contains one call to pri nt f (), which looks like:
printf(”input is: %l");
The compiler will note that only the %@ placeholder is used and the dopr nt . ¢ module

that is linked into the program will only contain code that handles printing of decimal
integers.

Consider now that the code is changed and another call to pri nt f () is added. The
new call looks like:

printf(”output is %d");

Now the compiler will detect that additional code to handle printing decimal integers to
a specific width must be enabled as well.

DS52053B-page 198

© 2012 Microchip Technology Inc.

C Language Features

As more features of pri nt f () are detected, the size of the code generated for the
printf () function will increase.

If the format string in a call to pri nt f () is not a string literal as above, but is rather a
pointer to a string, then the compiler will not be able to reliably predict the pri ntf ()
usage, and so it forces a more complete version of pri nt f () to be generated.

However, even without being able to scan pri nt f () placeholders, the compiler can
still make certain assumptions regarding the usage of the function. In particular, the
compiler can look at the number and type of the additional arguments to pri ntf ()
(those following the format string expression) to determine which placeholders could
be valid. This enables the size and complexity of the generated pri ntf () routine to
be kept to a minimum even in this case.

For example, if pri nt f () was called as follows:
printf(nyFormatString, 4, 6);

the compiler could determine that, for example, no floating-point placeholders are
required and omit these from being included in the pri nt f () function output. As the
arguments after the format string are non-prototyped parameters, their type must
match that of the placeholders.

No aspect of this operation is user-controllable (other than by adjusting the calls to
printf ());however, theactualpri ntf () code used by aprogram can be observed.
If compiling a program using pri nt f (), the driver will leave behind the pre-processed
version of dopr nt . ¢. This module, called dopr nt . pr e in your working directory, will
show the C code that will actually be contained in the pri nt f routine. As this code has
been pre-processed, indentation and comments will have been stripped out as part of
the normal actions taken by the C pre-processor.

© 2012 Microchip Technology Inc. DS52053B-page 199

MPLAB® XC8 C Compiler User’s Guide

5.12 MIXING C AND ASSEMBLY CODE

Assembly language code can be mixed with C code using two different techniques:
writing assembly code and placing it into a separate assembler module, or including it
as inline assembly in a C module.

Note: The more assembly code a project contains, the more difficult and time con-
suming will be its maintenance. As the project is developed, the compiler
may perform different optimizations a these are based on the entire pro-
gram. Assembly code may need revision if the compiler is updated due to
differences in the way the updated compiler may work. These factors do not
affect code written in C.

If assembly must be added, it is preferable to write this as a self-contained
routine in a separate assembly module, rather than in-lining it in C code.

5.12.1 Integrating Assembly Language Modules

Entire functions may be coded in assembly language as separate . as or. asmsource
files included into your project. They will be assembled and combined into the output
image using the linker.

By default, such modules are not optimized by the assembler optimizer. Optimization
can be enabled by using the - - OPT option, see Section 4.8.42 “--OPT: Invoke Com-
piler Optimizations”.

The following are guidelines that must be adhered to when writing a C-callable assem-
bly routine.

« Select, or define, a suitable psect for the executable assembly code (See
Section 5.15.1 “Program Sections” for an introductory guide to these.)

« Select a name (label) for the routine using a leading underscore character
< Ensure that the routine’s label is globally accessible from other modules

« Select an appropriate C-equivalent prototype for the routine on which argument
passing can be modelled

« Limit arguments and return values to single byte-sized objects (Assembly routines
may not define variables that reside in the compiled stack. Use global variables
for additional arguments.)

« Optionally, use a signature value to enable type checking when the function is
called

« Use bank selection instructions and mask addresses of any variable symbols

The following example goes through these steps for a mid-range device. The process
is the same for other devices. A mapping is performed on the names of all C functions
and non-st at i ¢ global variables. See Section 5.12.3 “Interaction Between
Assembly and C Code” for a complete description of mappings between C and
assembly identifiers.

An assembly routine is required which can add an 8-bit quantity passed to the routine
with the contents of PORTB and return this as an 8-bit quantity.

Most compiler-generated executable code is placed in psects called t ext n, where nis
a number. (see Section 5.15.2 “Compiler-Generated Psects”). We will create our
own text psect based on the psect the compiler uses. Check the assembly list file to
see how the text psects normally appear for assembly generated from C code. You may
see a psect, such as the following, generated by the code generator when compiling
for baseline or mid-range devices.

PSECT textO, | ocal, cl ass=CODE, del t a=2

DS52053B-page 200

© 2012 Microchip Technology Inc.

C Language Features

See Section 6.4.9.3 “PSECT” for detailed information on the flags used with the
PSECT assembler directive. This psect is called t ext 0. It is flagged | ocal , which
means that it is distinct from other psects with the same name. This flag is not important
in this example and can be omitted, if required. It lives in the CODE class. This flag is
important as it means it will be automatically placed in the area of memory set aside for
code. With this flag in place, you do not need to adjust the default linker options to have
the psect correctly placed in memory. The last option, the del t a value, is also very
important. This indicates that the memory space in which the psect will be placed is
word addressable (value of 2). The PIC10/12/16 program memory space is word
addressable; the data space is byte addressable.

For PIC18 devices, program memory is byte addressable, but instructions must be
word-aligned, so you will see code such as the following.

PSECT textO, | ocal, cl ass=CCODE, r el oc=2

In this case, the del t a value is 1 (which is the default setting), but the r el oc (align-
ment) flag is set to 2, to ensure that the section starts on a word-aligned address.

We simply need to choose a different name, so we might choose the name nyt ext,
as the psect name in which we will place out routine, so we have for our mid-range
example:

PSECT myt ext, | ocal, cl ass=CCDE, del t a=2

Let’s assume we would like to call this routine add in the C domain. In assembly
domain we must choose the name _add as this then maps to the C identifier add. If we
had chosen add as the assembly routine, then it could never be called from C code.
The name of the assembly routine is the label that we will place at the beginning of the
assembly code. The label we would use would look like this.

_add:

We need to be able to call this from other modules, so make this label globally acces-
sible, by using the GLOBAL assembler directive (Section 6.4.9.1 “GLOBAL").

GLOBAL _add

By compiling a dummy C function with a similar prototype to this assembly routine, we
can determine the signature value. The C-equivalent prototype to this routine would
look like:

unsi gned char add(unsigned char);

Check the assembly list file for the signature value of such a function. You will need to
turn the assembler optimizer off for this step, as the optimizer removes these values
from the assembly list file. Signature values are not mandatory, but allow for additional
type checking to be made by the linker. We determine that the following SI GNAT direc-
tive (Section 6.4.9.21 “SIGNAT") can be used.

S| GNAT _add, 4217

The W register will be used for passing in the argument. See Section 5.8.6 “Function
Parameters” for the convention used to pass parameters.

© 2012 Microchip Technology Inc. DS52053B-page 201

MPLAB® XC8 C Compiler User’s Guide

Here is an example of the complete routine for a mid-range device which could be
placed into an assembly file and added to your project. The GLOBAL and SI GNAT direc-
tives do not generator code, and hence do not need to be inside the myt ext psect,
although you can place them there if you prefer. The BANKSEL directive and BANKMASK
macro have been used to ensure that the correct bank was selected and that all
addresses are masked to the appropriate size.

#i ncl ude <xc.inc>

GLOBAL _add ; make _add gl obally accessible
SI GNAT _add, 4217 : tell the linker howit should be called

; everything following will be placed into the nytext psect
PSECT nyt ext, | ocal , cl ass=CODE, del t a=2
; our routine to add to ints and return the result

_add:
; Wis loaded by the calling function
BANKSEL (PORTB) ; select the bank of this object
ADDWF BANKMASK(PORTB) , w ; add paraneter to port

; the result is already in the required |location (Wso we can
; just return imediately
RETURN

To compile this, the assembly file must be preprocessed as we have used the C pre-
processor #i ncl ude directive. See Section 4.8.11 “-P: Preprocess Assembly
Files”.

To call an assembly routine from C code, a declaration for the routine must be provided.
This ensures that the compiler knows how to encode the function call in terms of
parameters and return values.

Here is a C code snippet that declares the operation of the assembler routine, then calls
the routine.

/'l declare the assenbly routine so it can be correctly called
extern unsigned char add(unsigned char a);

voi d mai n(void) {
vol atil e unsigned char result;

result = add(5); // call the assenbly routine

}

5.12.2 #asm, #endasm and asm()

Assembly instructions may also be directly embedded inline into C code using the
directives #asm #endasmor the statement asmn() ; .

The #asmand #endasmdirectives are used to start and end a block of assembly
instructions which are to be embedded into the assembly output of the code generator.
The #asmblock is not syntactically part of the C program, and thus it does not obey
normal C flow-of-control rules. This means that you should not use this form of inline
assembly inside C constructs like i f (), whil e() and for () statements. However,
this is the easiest means of adding multiple assembly instructions.

The asn() ; statement is used to embed assembler instructions inline with C code.
This form looks and behaves like a C statement. The instructions are placed in a string
inside what look like function call brackets, although no call takes place. Typically one
instruction is placed in the string, but you can specify more than one assembly instruc-
tion by separating the instructions with a\ n character, (e.g., asn(“ MOVLW

55\ nMOVWAF _x") ;) Code will be more readable if you one place one instruction in
each statement and use multiple statements.

DS52053B-page 202 © 2012 Microchip Technology Inc.

C Language Features

You may use the asnt() form of inline assembly at any point in the C source code as it
will correctly interact with all C flow-of-control structures.

The following example shows both methods used:

unsi gned int var;
voi d mai n(voi d)

{
var = 1,
#asm /'l like this...
BCF 0, 3
BANKSEL(_var)
RLF (_var) &7fh
RLF (_var+1)&7fh
#endasm
/] do it again the other way...
asm(“BCF 0, 3");
asnm(“BANKSEL _var”);
asm(“RLF (_var) &07fh");
asm(“RLF (_var+1) &7fh");
}

inline assembly code is never optimized by the assembler optimizer.

When using inline assembler code, great care must be taken to avoid interacting with
compiler-generated code. The code generator cannot scan the assembler code for reg-
ister usage and so will remain unaware if registers are clobbered or used by the assem-
bly code.

The registers used by the compiler are explained in Section 5.7 “Register Usage”. If
you are in doubt as to which registers are being used in surrounding code, compile your
program with the - - ASMLI ST option (see Section 4.8.16 “--ADDRQUAL: Set Com-
piler Response to Memory Qualifiers”) and examine the assembler code generated
by the compiler. Remember that as the rest of the program changes, the registers and
code strategy used by the compiler will change as well.

If a C function is called from main-line and interrupt code, it may be duplicated, see
Section 5.9.5 “Function Duplication”. Although a special prefix is used to ensure
that labels generated by the compiler are not duplicated, this does not apply to labels
defined in hand-written, inline assembly code in C functions. Thus, you should not
define assembly labels in inline assembly if the containing function might be duplicated.

5.12.3 Interaction Between Assembly and C Code

MPLAB XC8 C Compiler incorporates several features designed to allow C code to
obey requirements of user-defined assembly code. There are also precautions that
must be followed to ensure that assembly code does not interfere with the assembly
generated from C code.

The command-line driver ensures that all user-defined assembly files have been pro-
cessed first, before compilation of C source files begin. The driver is able to read and
analyze certain information in the relocatable object files and pass this information to
the code generator. This information is used to ensure the code generator takes into
account requirement of the assembly code. See Section 4.3.4 “Compilation of
Assembly Source” for further information on the compile sequence.

© 2012 Microchip Technology Inc. DS52053B-page 203

MPLAB® XC8 C Compiler User’s Guide

5.12.3.1 EQUIVALENT ASSEMBLY SYMBOLS

Most C symbols map to an corresponding assembly equivalent.

This mapping is such that an “ordinary” symbol defined in the assembly domain cannot
interfere with an “ordinary” symbol in the C domain. So for example, if the symbol mai n
is defined in the assembly domain, it is quite distinct to the nmai n symbol used in C code
and they refer to different locations.

The name of a C function maps to an assembly label that will have the same name, but
with an underscore prepended. So the function mai n() will define an assembly label
_mai n.

Baseline PIC devices may use alternate assembly domain symbols for functions. The
destinations of call instructions on these devices are limited to the first half of a program
memory page. The compiler, thus, encodes functions in two parts, as illustrated in the
following example of a C function, add() , compiled for a baseline device.

entry__add:
LIMP _add

The label ent ry__add is the function’s entry point and will always be located in a spe-
cial psect linked in the first half of a program memory page. The code associated with
this label is simply a long jump (see Section 6.4.1.4 “Long Jumps and Calls”) to the
actual function body located elsewhere and identified by the label _add.

If you plan to call routines from assembly code, you must be aware of this limitation in
the device and the way the compiler works around it for C functions. Hand-written
assembly code should always call the ent ry___f uncNarme label rather than the usual
assembly-equivalent function label.

If a C function is qualified st at i ¢, and there is more than one st at i ¢ function in the
program with exactly the same name, the name of the first function will map to the usual
assembly symbol and the subsequent functions will map to a special symbol with the
form: fi | eName@ unct i onName, where f i | eNane is the name of the file that
contains the function, and f unct i onNane is the name of the function.

For example, a program contains the definition for two st at i ¢ functions, both called
add. One lives in the file mai n. ¢ and the other in | cd. c. The first function will
generate an assembly label _add. The second will generate the label | cd@dd.

The name of a non-aut o C variable also maps to an assembler label that will have the
same name, but with an underscore prepended. So the variable r esul t will define an
assembly label: _resul t.

If the C variable is qualified st at i ¢, there, again, is a chance that there could be more
than one variable in the program with exactly the same C name. The same rules apply
to non-local st at i ¢ variables as to st at i ¢ functions. The name of the first variable
will map to a symbol prepended with an underscore; the subsequent symbols will have
the form: fi | eName@ar i abl eNane, where f i | eNane is the name of the file that
contains the variable, and var i abl eName is the name of the variable.

For example a program contains the definition for two st at i ¢ variables, both called
resul t. One lives in the file mai n. ¢ and the otherin | cd. c. The first function will
generate an assembly label _resul t. The second will generate the label
lcd@esult.

If there is more than one local st at i ¢ variable (i.e., it is defined inside a function def-
inition) then all the variables will have an assembly name of the form:

functi onName@ari abl eNane. So, if there is a st at i ¢ variable called out put in
the function r ead, and another st at i ¢ variable with the same name defined in the
function updat e, then in assembly the symbols can be accessed using the symbols
read@ut put and updat e@ut put , respectively.

DS52053B-page 204

© 2012 Microchip Technology Inc.

C Language Features

If there is more than one st at i ¢ function with the same name, and they contain defi-
nitions for st at i ¢ variables of the same name, then the assembly symbol used for
these variables will be of the form: fi | eNane@ uncti onNane@ar i abl eNarre.

Having two st at i ¢ variables or functions with the same name is legal, but not recom-
mended as the wrong variable may be accessed or the wrong function called.

To make accessing of parameter and aut o variables easier, special equates are
defined which map a unique symbol to each variable. The symbol has the form:
functi onNanme@ari abl eNane. Thus, if the function mai n defines an aut o variable
called f oobar, the symbol mai n@ oobar can be used in assembly code to access
this C variable.

Function parameters use the same symbol mapping as aut o variables. If a function
called r ead has a parameter called channel , then the assembly symbol for that
parameter is r ead@hannel .

Function return values have no C identifier associated with them. The return value for
a function shares the same memory as that function’s parameter variables, if they are
present. The assembly symbol used for return values has the form ?_f uncNarre,
where f uncNane is the name of the function returning the value. Thus, if a function,
get Port returns a value, it will be located the address held by the assembly symbol
?_get Por t . If this return value is more than one byte in size, then an offset is added
to the symbol to access each byte, e.g., ?_get Port +1.

If the compiler creates temporary variables to hold intermediate results, these will
behave like aut o variables. As there is no corresponding C variable, the assembly
symbol is based on the symbol that represents the aut o block for the function plus an
offset. That symbol is ??_f uncNane, where f uncNarne is the function in which the
symbol is being used. So for example, if the function mai n uses temporary variables,
they will be accessed as an offset from the symbol ??_rai n.

5.12.3.2 ACCESSING REGISTERS FROM ASSEMBLY CODE

If writing separate assembly modules, SFR definitions will not automatically be acces-
sible. The assembly header file <xc. i hc> can be used to gain access to these register
definitions. Do not use this file for assembly inline with C code as it will clash with def-
initions in <xc. h>.

Include the file using the assembler’s | NCLUDE directive, (see

Section 6.4.10.4 “INCLUDE") or use the C preprocessor’s #i ncl ude directive. If you
are using the latter method, make sure you compile with the - P driver option to prepro-
cess assembly files, see Section 4.8.11 “-P: Preprocess Assembly Files”.

The symbols in this header file look similar to the identifiers used in the C domain when
including <xc. h>, e.g., PORTA, EECONL1, etc. They are different symbols in different
domains, but will map to the same memory location.

Bits within registers are defined as the r egi st er Nane, bi t Nunber . So for example,
RAOQ is defined as PORTA, 0.

Here is an example of a mid-range assembly module that uses SFRs.

#i ncl ude <xc.inc>
GLOBAL _setports

PSECT t ext, cl ass=CCODE, | ocal , del t a=2
_setports:

MOVLW OxAA

BANKSEL (PORTA)

MOVWE BANKMASK(PORTA)
BANKSEL (PORTB)
BSF RB1

© 2012 Microchip Technology Inc. DS52053B-page 205

MPLAB® XC8 C Compiler User’s Guide

If you wish to access register definitions from assembly that is inline with C code, a dif-
ferent header file is available for this purpose. Include the header file <caspi c. h> into
the assembly code. This file can only be used with baseline and mid-range devices.
There is non comparable file for PIC18 devices.

The symbols used for register names will be the same as those defined by <xc. i nc>;
however, the names assigned to bit variables within the registers will include the suffix
_bi t. So for example, the example given previously could be rewritten as inline
assembly as follows.

#asm

MOVLW OXAA
BANKSEL (PORTA)

MOVWE BANKMASK(PORTA)

BANKSEL (PORTB)

BSF RB1_bit
#endasm

Care must be taken to ensure that you do not destroy the contents of registers that are
holding intermediate values of calculations. Some registers are used by the compiler
and writing to these registers directly can result in code failure. The code generator
does not detect when SFRs have changed as a result of assembly code that writes to
them. The list of registers used by the compiler and further information can be found in
Section 5.7 “Register Usage”.

5.12.3.3 ABSOLUTE PSECTS

Some of the information that is extracted from the initial compilation of assembly code,
see Section 4.3.4 “Compilation of Assembly Source”, relates to absolute psects,
specifically psects defined using the abs and ovr | d, PSECT flags, see

Section 6.4.9.3 “PSECT” for information on this directive.

MPLAB XC8 is able to determine the address bounds of absolute psects and uses this
information to ensure that the code produced from C source by the code generator
does not use memory required by the assembly code. The code generator will reserve
any memory used by the assembly code prior to compiling C source.

Here is an example of how this works. An assembly code files defines a table that must
be located at address 0x110 in the data space. The assembly file contains:

PSECT | kupt bl , cl ass=RAM space=1, abs, ovl rd
ORG 110h
| ookup:

DS 20h

An absolute psect always starts at address 0. For such psects, you can specify a
non-zero starting address by using the ORG directive. See Section 6.4.9.4 “ORG” for
important information on this directive.

When the project is compiled, this file is assembled and the resulting relocatable object
file scanned for absolute psects. As this psect is flagged as being abs and ovl r d, the
bounds and space of the psect will be noted — in this case, a memory range from
address 0x110 to Ox12F in memory space 1 is noted as being used. This information is
passed to the code generator to ensure that this address range is not used by the
assembly generated from the C code.

The linker handles all of the allocation into program memory, and so for hand-written
assembly, only the psects located in data memory need be defined in this way.

DS52053B-page 206

© 2012 Microchip Technology Inc.

C Language Features

5.12.3.4 UNDEFINED SYMBOLS

If a variable needs to be accessible from both assembly and C source code, it can be
defined in assembly code, if required, but it is easier to do so in C source code.

A problem could occur if there is a variable defined in C source, but is only ever refer-
enced in the assembly code. In this case, the code generator would remove the vari-

able believing it is unused. The linker would be unable to resolve the symbol referenced
by the assembly code and an error will result.

To work around this issue, MPLAB XC8 also searches assembly-derived object files for
symbols which are undefined. see Section 4.3.4 “Compilation of Assembly
Source”. These will be symbols that are used, but not defined, in assembly code. The
code generator is informed of these symbols, and if they are encountered in the C code,
the variable is automatically marked as being volatile. This action has the same effect
as qualifying the variable vol at i | e in the source code, see Section 5.4.7.2 “Volatile
Type Qualifier”.

Variables qualified as vol at i | e will never be removed by the code generator, even if
they appear to be unused throughout the program.
For example, if a C program defines a global variable as follows:
int input;
but this variable is only ever used in assembly code. The assembly module(s) can
simply declare this symbol using the GLOBAL assembler directive, and then use it. The
following PIC18 example illustrates the assembly code accessing this variable.
GLOBAL _input, _raster
PSECT text, | ocal, cl ass=CODE, r el oc=2
_raster:

MOVF _input,w
The compiler knows of the mapping between the C symbol i nput , and the corre-
sponding assembly symbol _i nput (see Section 5.12.3 “Interaction Between
Assembly and C Code”) . In this instance the C variable i nput will not be removed
and be treated as if it was qualified vol ati | e.

© 2012 Microchip Technology Inc. DS52053B-page 207

MPLAB® XC8 C Compiler User’s Guide

5.13 OPTIMIZATIONS

The optimizations in MPLAB XC8 compiler can broadly be broadly grouped into C-level
optimizations performed on the source code before conversion into assembly; and
assembly-level optimizations performed on the assembly code generated by the com-
piler.

The C-level optimizations are performed early during the code generation phase and
so have flow-on benefits: performing one optimizations may mean that another can
then be applied.

As these optimizations are applied before the debug information has been produced,
there is typically little impact on source-level debugging of programs.

Some of these optimizations are integral to the code generation process and so cannot
be disabled via an option. Suggestions as to how specific optimizations can be
defeated are given in the sections below.

In Standard mode, and particularly Free mode, some of these optimizations are dis-
abled. Even if they are enabled, they may only be applied if very specific conditions are
met. As a result, you might find that some lines of code are optimized, but others are
not.

The main C-level optimizations which simplify or change the C expressions are listed
below.

Unused variables in a program are removed. Variables removed will not have mem-
ory reserved for them, will not appear in any list or map file, and will not be
present in debug information, and so will not be observable in the debugger.
A warning is produced if an unused variable is encountered.

Objects qualified vol at i | e will never be removed, see

Section 5.4.7.2 “Volatile Type Qualifier”. Taking the address of a variable
or referencing its assembly-domain symbol in hand-written assembly code
also constitutes use of the variable.

Redundant assignments to variables not subsequently used are removed, unless
the variable is vol at i | e. The assignment statement is completely re-
moved, as if it was never present in the original source code. No code will be
produced for it, and you will not be able to set a breakpoint on that line in the
debugger.

Unused functions in a program are removed. A function is considered unused if it is
not called, directly or indirectly, nor has had its address taken. The entire
function is removed, as if it was never present in the original source code. No
code will be produced for it and you will not be able to set a breakpoint on
any line in the function in the debugger.

Referencing a function’s assembly-domain symbol in a separate hand-writ-
ten assembly module will prevent it being removed. The assembly code
need only use the symbol in the GLOBAL directive.

Unused return expressions in a function are removed. The return value is consid-
ered unused if the result of all calls to that function discard the return value.
The code associated with calculation of the return value will be removed, and
the function will be encoded as if its return type was voi d.

Propagation of constants is performed where the numerical contents of a variable
can be determined. Variables which are not volatile and whose value can be
exactly determined are replaced with the numerical value. Uninitialized
global variables are assumed to contain zero prior to any assignment to
them.

DS52053B-page 208

© 2012 Microchip Technology Inc.

C Language Features

Variables assigned a value before being read are not cleared or initialized by the
runtime startup code. Only non-aut o variables are considered and if they
are assigned a value before other code can read their value, they are treated
as being per si st ent , see Section 5.4.8.1 “Persistent Type Qualifier”.
All per si st ent objects are not cleared by the runtime startup code, so this
optimization will speed execution of the program startup.

Dereferencing pointers with only target can be replaced with direct access of the
target object. This applies to data and function pointers.

As C-level optimizations are performed before debug information is produced, they
tend to have less impact on debugging information. However, if a variable is located in
aregister IDEs, such as MPLAB IDE, may indicate incorrect values in their Watch view.
This is due to a limitation in the file format used to pass debug information to the IDE
(which is currently COFF). Check the assembly list file to see if registers are using in
the routine being debugged.

The assembly-level optimizations are described in Section 6.5 “Assembly-Level
Optimizations”.

© 2012 Microchip Technology Inc. DS52053B-page 209

MPLAB® XC8 C Compiler User’s Guide

5.14 PREPROCESSING

All C source files are preprocessed before compilation. The preprocessed file is not
deleted after compilation. It will have a . pr e extension and the same base name as
the source file from which it is derived.

The - - PRE option can be used to preprocess and then stop the compilation. See
Section 4.8.46 “--PRE: Produce Preprocessed Source Code”.

Assembiler files can also be preprocessed if the - P driver option is issued. See
Section 4.8.11 “-P: Preprocess Assembly Files”.
5.14.1 C Language Comments

The MPLAB XC8 C compiler supports standard C comments, as well as C++ style com-
ments. Both types are illustrated in the following table.

Comment Syntax Description Example
[* */ Standard C code comment. /* This is line 1
Used for one or more lines. This is line 2 */
/1 C++ code comment. Used for /[l This is line 1
one line only. /[l This is line 2

5.14.2 Preprocessor Directives

MPLAB XC8 accepts several specialized preprocessor directives in addition to the
standard directives. All of these are listed in Table 5-11 on the next page.

Macro expansion using arguments can use the # character to convert an argument to
a string, and the ## sequence to concatenate arguments. If two expressions are being
concatenated, consider using two macros in case either expression requires
substitution itself, so for example

#define __pastel(a,b) a##b
#define __paste(a,b) __pastel(a,b)

lets you use the past e macro to concatenate two expressions that themselves may
require further expansion. Remember also that once a macro identifier has been
expanded, it will not be expanded again if it appears after concatenation.

DS52053B-page 210

© 2012 Microchip Technology Inc.

C Language Features

TABLE 5-11: PREPROCESSOR DIRECTIVES
Directive Meaning Example
Preprocessor null directive, do nothing |
#assert Generate error if condition false #assert SIZE > 10
#asm Signifies the beginning of inline assem- | #asm MOVLW FFh
bly #endasm
#defi ne Define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))
#el i f Short for #el se #if see #ifdef
#el se Conditionally include source lines see #if
#endasm | Terminate inline assembly see #asm
#endi f Terminate conditional source inclusion |see #if
#error Generate an error message #error Size too big
#if Include source lines if constant #if SIZE < 10
expression true ¢ = process(10)
#el se
skip();
#endi f
#i f def Include source lines if preprocessor #i f def FLAG
symbol defined do_l oop();
#elif SIZE == 5
ski p_l oop();
#endi f
#i f ndef Include source lines if preprocessor #i f ndef FLAG
symbol not defined jum();
#endi f
#i ncl ude |Include text file into source #i ncl ude <stdi o. h>
#i ncl ude “project.h”
#ine Specify line number and filename for |#l ine 3 final
listing
#nn (Where nn is a number) short for #20
#1 i ne nn
#pr agma Compiler specific options Refer to Section 5.14.4 “Pragma
Directives”
#undef Undefines preprocessor symbol #undef FLAG
#war ni ng | Generate a warning message #war ni ng Length not set

The type and conversion of numeric values in the preprocessor domain is the same as
in the C domain. Preprocessor values do not have a type, but acquire one as soon as
they are converted by the preprocessor. Expressions may overflow their allocated type
in the same way that C expressions may overflow.

Overflow may be avoided by using a constant suffix. For example, an L after the num-
ber indicates it should be interpreted as a long once converted.

So for example
#defi ne MAX 1000*1000

and

#defi ne MAX 1000*1000L
will define the values 0x4240 and 0xF4240, respectively.

© 2012 Microchip Technology Inc.

DS52053B-page 211

MPLAB® XC8 C Compiler User’s Guide

5.14.3

Predefined Macros

The compiler drivers define certain symbols to the preprocessor, allowing conditional
compilation based on chip type, etc. The symbols listed in Table 5-12 show the more
common symbols defined by the drivers.

TABLE 5-12: PREDEFINED MACROS
Symbol When set Usage

__CHI PNAME When chip selected To indicate the specific chip type
selected, e.g., __16F877

__ DATABANK If eeprom or flash memory imple- | Identifies which bank the EED-

mented ATA/PMDATA register is found

_ DATE__ Always To indicate the current date, e.g.,
May 21 2004

__FILE__ Always To indicate this source file being
preprocessed.

__FLASHTYPE If flash memory is implemented | To indicate the type of flash mem-
ory employed by the target
device, see _ PROGVEMbelow.

__LINE__ Always To indicate this source line
number.

__J_PART If PIC18 device Indicates device a 'J’ series part

_ _MPLAB_| CDX__ If compiling for MPLAB® ICD or (where Xis empty, 2 or 3.

MPLAB ICD 2/3 debugger

Assigned 1 to indicate that the
code is generated for use with the
Microchip MPLAB ICD,ICD 2 or
ICD 3.

__MPLAB_PI CKI TX__

If compiling for MPLAB® PICKIT
2/3

Assigned 1 to indicate that the
code is generated for use with the
Microchip MPLAB PICKIT 2 or
PICKIT 3

__MPLAB_REALICE__

If compiling for MPLAB®
REALICE

Assigned 1 to indicate that the
code is generated for use with the
Microchip MPLAB REALICE.

__RESETBI TS_ADDR

If - - RUNTI ME option request

Indicates the address at which

STATUS register save the STATUS register will be saved
_TIME__ Always To indicate the current time, e.g.,
08: 06: 31.
__XC Always Indicates MPLAB XC compiler for
Microchip in use.
__XC8 Always Indicates MPLAB XC compiler for
Microchip 8-bit devices in use.
__XC8_VERSI ON Always To indicate the compiler’s version
number multiplied by 1000, e.g.,
v1.00 will be represented by
1000.
__CHI PNAME When chip selected To indicate the specific chip type
selected, e.g., _16F877
BANKBI TS Always Assigned 0, 1 or 2 to indicate 1, 2
or 4 available banks or RAM.
BANKCOUNT Always To indicate the number of banks
of data memory implemented.
COVVON If common RAM present To indicate whether device has

common RAM area.

DS52053B-page 212

© 2012 Microchip Technology Inc.

C Language Features

TABLE 5-12: PREDEFINED MACROS (CONTINUED)
Symbol When set Usage
_EEPROVBI ZE Always To indicate how many bytes of
EEPROM are available.
_ERRATA_TYPES If PIC18 device Indicates the errata workarounds

being applied, see - - ERRATA
option Section 4.8.27.

FAM LY FAM LY

If PIC18 device

Indicates PIC18 family

_FLASH _ERASE_SI ZE | Always Size of flash erase block
_FLASH WRI TE_SI ZE | Always Size of flash write block
_GPRBI TS Always Assigned 0, 1 or 2 to indicate 1, 2
or 4 available banks or general
purpose RAM.
_HAS_OSCVAL_ If the target device has an oscilla- | To indicate target device may
tor calibration register require oscillator calibration
_HTC_EDI TI ON_ Always Indicates which of PRO, Standard
or Free compiler is in use. Values
of 2, 1 or 0 are assigned
respectively.
_HTC_VER MAJOR_ Always To indicate the whole or decimal
_HTC_VER_M NOR_ component, respectively, of the
compiler’s version number.
_HTC_VER PATCH_ |Always To indicate the patch level of the
_HTC_VER _PLVL_ compiler’s version number.
MPC Always Indicates compiling for Microchip
PIC® MCU family.
_OWNI _CODE_ Always Indicates compiling using an
OCG compiler.
_PIC12 If baseline (12-bit instruction) To indicate selected device is a
device baseline PIC devices.
_PIC12E If enhanced baseline (12-bit To indicate selected device is an
instruction) device enhanced baseline PIC devices.
_PICi14 If mid-range (14-bit instruction) To indicate selected device is a
device mid-range PIC devices.
_PI C14E If Enhanced mid-range (14 bit To indicate selected device is an
instruction) device Enhanced mid-range PIC
devices.
_PIci8 If PIC18 (16-bit instruction) To indicate selected device is an
device PIC18 devices.
PROGVEM If compiling for mid-range device | To indicate the type of flash mem-
with flash memory ory employed by the target
device. Values OxFF (unknown),
0xFO (none), 0 (read only),
1(word write with auto erase), 2
(block write with auto erase), 3
(block write with manual erase)
_RAMBI ZE If PIC18 device To indicate how many bytes of
data memory are available
_ROwVBI ZE Always To indicate how many words of
program memory are available.
EEPROVEI ZE Always To indicate how many bytes of

EEPROM are available.

ERRATA_4000_BOUND
ARY

If the ERRATA_4000 applies

To indicate that the 4000 word
boundary errata is applied

© 2012 Microchip Technology Inc.

DS52053B-page 213

MPLAB® XC8 C Compiler User’s Guide

TABLE 5-12: PREDEFINED MACROS (CONTINUED)

Symbol When set Usage
H _TECH C Always To indicate that the C language
variety is HI-TECH C compatible.
MPLAB_I| CD If compiling for MPLAB® ICD or Assigned 1 to indicate that the
MPLAB ICD 2/3 debugger code is generated for use with the

Microchip MPLAB ICD 1.
Assigned 2 for MPLAB ICD 2; 3
for MPLAB ICD 3.

Each symbol, if defined, is equated to 1 unless otherwise stated.

5.14.4 Pragma Directives

There are certain compile-time directives that can be used to modify the behavior of the
compiler. These are implemented through the use of the ANSI standard #pr agrma
facility. The format of a pragma is:

#pragma keyword options

where keywor d is one of a set of keywords, some of which are followed by certain
opti ons. A list of the keywords is given in Table 5-13. Those keywords not discussed
elsewhere are detailed below.

TABLE 5-13: PRAGMA DIRECTIVES

Directive Meaning Example
addr qual Specify action of qualifiers |#pragnma addr qual =requi re
config Specify configuration bits | #pragma confi g WDT=ON
inline Inline function if possible #pragma inline(getPort)
intrinsic Specify function is inline #pragma intrinsic(_del ay)
interrupt_|evel Allow call from interrupt #pragma interrupt_level 1
and main-line code
pack Specify structure packing |#pragna pack 1
printf_check Enable printf-style format | #pr agma
string checking printf_check(printf) const
psect Rename compiler-gener- | #pragma psect
ated psect nvBANKO=nmy_nvram
regsused Specify registers used by |#pragna regsused nyFunc
function wreg, fsr
switch Specify code generation for |#pragma switch direct
switch statements
war ni ng Control messaging #pragma war ni ng di sabl e
parameters 299, 407

DS52053B-page 214 © 2012 Microchip Technology Inc.

C Language Features

5.14.4.1 THE #PRAGMA ADDRQUAL DIRECTIVE

This directive allows you to control the compiler’s response to non-standard memory
qualifiers. This pragma is an in-code equivalent to the - - ADDRQUAL option and both
use the same arguments, see Section 4.8.16 “--ADDRQUAL: Set Compiler
Response to Memory Qualifiers”.

The pragma has effect over the entire C program and should be issued once, if
required. If the pragma is issued more than once, the last pragma determines the com-
piler's response.

For example:
#pragma addr qual =require
bank2 int foobar;

5.14.4.2 THE #PRAGMA CONFIG DIRECTIVE

This directive allows the device configuration bits to be specified for PIC18 target
devices. See Section 5.3.5 “Configuration Bit Access” for full details.

5.14.4.3 THE #PRAGMA INLINE DIRECTIVE

The #pragma i nl i ne directive indicates to the compiler that calls to the specified
function should be as fast as possible. This pragma has the same effect as using the
i nl i ne function specifier, see.

5.14.4.4 THE #PRAGMA INTRINSIC DIRECTIVE

The #pragma i ntrinsi c directive is used to indicate to the compiler that a function
will be inlined intrinsically by the compiler. The directive is only usable with special func-
tions that the code generator will expand internally, e.g the _del ay function. Such
functions do not have corresponding source code and are handled specially by the
compiler.

Note: Use of this pragma with a user-defined function does not mean that function
will be inlined and an error will result. See the i nl i ne function specifier for
that operation, in Section 5.8.1.2 “Inline Specifier”.

5.14.45 THE #PRAGMA INTERRUPT_LEVEL DIRECTIVE

The #pragma i nterrupt _| evel directive can be used to prevent function duplica-
tion of functions called from main-line and interrupt code. See
Section 5.9.5.1 “Disabling Duplication” for more information.

5.14.4.6 THE #PRAGMA PACK DIRECTIVE

All 8-bit PIC devices can only perform byte accesses to memory and so do not require
any alignment of memory objects within structures. This pragma will have no effect
when used.

© 2012 Microchip Technology Inc. DS52053B-page 215

MPLAB® XC8 C Compiler User’s Guide

5.14.4.7 THE #PRAGMA PRINTF_CHECK DIRECTIVE

Certain library functions accept a format string followed by a variable number of argu-
ments in the manner of pri nt f () . Although the format string is interpreted at runtime,
it can be compile-time checked for consistency with the remaining arguments.

This directive enables this checking for the named function, for example the system
header file <st di 0. h> includes the directive:

#pragma printf_check(printf) const

to enable this checking for pri nt f () . You may also use this for any user-defined
function that accepts pri nt f -style format strings.

The qualifier following the function name is to allow automatic conversion of pointers in
variable argument lists. The above example would cast any pointers to strings in RAM
to be pointers of the type (const char *)

Note that the warning level must be set to -1 or below for this option to have any visible
effect. See Section 4.8.59 “--WARN: Set Warning Level”.

5.14.4.8 THE #PRAGMA PSECT DIRECTIVE

Normally the object code generated by the compiler is broken into the standard psects.
This is described in 5.15.2 “Compiler-Generated Psects”. For an introductory guide
to psects, see Section 5.15.1 “Program Sections”. This is fine for most applications,
but sometimes it is necessary to redirect variables or code into different psects when a
special memory configuration is desired.

Some code and data compiler-generated psects may be redirected using a #pr agna
psect directive. The general form of this pragma looks like:

#pragma psect standardPsect =newPsect

and instructs the code generator that anything that would normally appear in the stan-
dard psect st andar dPsect , will now appear in a new psect called newPsect . This
psect will be identical to st andar dPsect in terms of its flags and attributes; however,
it will have a uniqgue name. Thus, you can explicitly position this new psect without
affecting the placement of anything in the original psect.

If the name of the standard psect that is being redirected contains a counter (e.g.,
text 0, text1,text2,etc.), the placeholder %9 should be used in the name of the
psect at the position of the counter, e.g., t ext %84. This will match any psect, regard-
less of the counter value. For example, to remap a C function, you could use:

#pragma psect text %=l ookupfunc
i nt | ookup(char ind)

{

Standard psects that make reference to a bank number are not using a counter and do
not need the placeholder to match. For example, the redirect an uninitialized variable
from bank 1 memory, use:

#pragma psect bssBANKl=shar edbj
int foobar;

This pragma should not be used for any of the data psects (dat a or i dat a) that hold
initialized variables. These psects must be assembled in a particular order and the use
of this pragma to redirect some of their content will destroy this order. Use of this
pragma with RAM-based psects that are intended to be linked into a particular RAM
bank is acceptable, but the new psect must be linked into the same bank. Linking the
new psect to a different bank may lead to code failure.

DS52053B-page 216

© 2012 Microchip Technology Inc.

C Language Features

This pragma affects the entire module in which it is located, regardless of the position
of the pragma in the file. Any given psect should only be redirected once in a particular
module. That is, you cannot redirect the standard psect for some of the module, then
swap back to using the standard psect for the remainder of the source code. The
pragma should typically be placed at the top of the source file. It is recommended that
the code or variables to be separated be placed in a source file all to themselves so
they are easily distinguished.

To determine the psect in which the function or object is normally located, define the
function or object in the usual way and without this pragma. Now check the assembly
listfile (see 6.5 “ Assembly-Level Optimizations”) to determine the psect in which the
function or object is normally positioned. Note that the location of objects and functions
may vary with the target device and compiler options selected.

Check either the assembly list file or the map file with the pragma in place to ensure
that the mapping has worked as expected and that the function or variable has been
linked at the address specified.

Consider this crude program that consists of several functions.
#i ncl ude <xc. h>
void init(void)

{
}

int getlnput(void)

return PORTA,
}
i nt masher (int val)
{
return val;
}
voi d mai n(voi d)
{
int input;
init();
while(1) {
i nput = getlnput();
masher (i nput);
}
}

The programmer decides that the function masher () is to be linked at a particular
address and they do not want to make the function absolute. The programmer first
compiles they code and checked either the assembly list file or map file to find the psect
in which masher is normally found. For example, the map file shows the symbol asso-
ciated with the function and the psect in which it is located.

Synbol Tabl e
_get I nput text 13 07E5
_init text12 07E4
_main mai nt ext 07ED

_masher text 14 07E8

© 2012 Microchip Technology Inc. DS52053B-page 217

MPLAB® XC8 C Compiler User’s Guide

So itis allocated to a t ext n psect. The source code for the masher () function is
removed from this source file and placed in is own file. The psect pragma is then
applied so that this new file contains the following.

#pragnma psect text%Wu=myMasher Psect
int masher (int val)

{
}

After recompiling, the function is now located in its own psect. The updated map file
now shows the following. Note that its address has not changed.

return val;

Synbol Tabl e
_get I nput text13 07E5
_init text12 O7E4
_main mai nt ext 07ED
_masher nmyMasher Psect 07E8

The programmer now uses the driver option - L- pmyMasher Psect =1000h to locate
this psect at the desired location. After recompiling, the map file now shows the follow-
ing. Note that the addresses of other functions have not been affected by the pragma
in this example.

Synbol Tabl e
_get I nput text13 07E5
_init text12 07E4
_main mai nt ext 07ED
_masher nmyMasher Psect 1000

Variables can also be placed at specific positions by making them absolute, see
Section 5.5.4 “Absolute Variables”. The same is also true for functions. See

5.8.4 “Changing the Default Function Allocation”. The decision whether functions
or variables should be positioned using absolutes or via the psect pragma should be
based on the location requirements.

Using absolute functions and variables is the easiest method, but only allows place-
ment at an address which must be known prior to compilation. The psect pragma is
more complex, but offers all the flexibility of the linker to position the new psect into
memory. For example, you can specify that functions or variables reside at a fixed
address, or that they be placed after other psects, or that the psect be placed anywhere
in a compiler-defined or user-defined range of address. See Chapter 7. “Linker” for
the features and options available when linking. See also 4.8.7 “-L-: Adjust Linker
Options Directly” for information on controlling the linker from the driver or in MPLAB
IDE.

DS52053B-page 218 © 2012 Microchip Technology Inc.

C Language Features

5.14.49 THE #PRAGMA REGSUSED DIRECTIVE

The #pr agna regsused directive allows the programmer to indicate register usage
for functions that will not be “seen” by the code generator, for example if they were writ-
ten in assembly code. It has no effect when used with functions defined in C code, but
in these cases the register usage of these functions can be accurately determined by
the compiler and the pragma is not required.

The compiler will determine only those registers and objects which need to be saved
forani nt er rupt function defined and use of this pragma allows the code generator
to also determine register usage for routines written in assembly code.

The general form of the pragma is:
#pragma regsused routineNane regi sterlList
where r out i neNane is the C equivalent name of the function or routine whose register

usage is being defined, and r egi st er Li st is a space-separated list of registers
names, as shown in Table 5-9.

Those registers not listed are assumed to be unused by the function or routine. The
code generator may use any of these registers to hold values across a function call.
Hence, if the routine does in fact use these registers, unreliable program execution may
eventuate.

The register names are not case sensitive and a warning will be produced if the register
name is not recognized. A blank list indicates that the specified function or routine uses
no registers. If this pragma is not used, the compiler will assume that the external func-
tion uses all registers.

For example, a routine called _sear ch is written in PIC18 assembly code. In the C
source, we may write:

extern void search(void);
#pragma regsused search weg status fsr0

to indicate that this routine used the W register, STATUS and FSRO. Here, FSRO
expands to both FSROL and FSROH. These could be listed individually, if required.

5.14.4.10 THE #PRAGMA SWITCH DIRECTIVE

Normally, the compiler chooses how swi t ch statements will be encoded to produce
the smallest possible code size. The #pr agma swi t ch directive can be used to force
the compiler to use a different coding strategy.

The general form of the switch pragma is:
#pragma switch swtchType

where swi t ch_t ype is one of the available switch types (the only switch type currently
implemented for PIC18 devices is space) listed in Table 5-14.

TABLE 5-14: SWITCH TYPES

switch type description
speed Use the fastest switch method
space Use the smallest code size method
time Use a fixed delay switch method
aut o Use smallest code size method (default)
di rect (deprecated) Use a fixed delay switch method
si npl e (deprecated) Sequential xor method

© 2012 Microchip Technology Inc. DS52053B-page 219

MPLAB® XC8 C Compiler User’s Guide

Specifying the t i me option to the #pr agnma swi t ch directive forces the compiler to
generate a table look-up style swi t ch method. The time taken to execute each case
is the same, so this is useful where timing is an issue, e.g state machines.

This pragma affects all subsequent code.
The aut o option may be used to revert to the default behavior.

There is information printed in the assembly list file for each swi t ch statement show-
ing the chosen strategy, see Section 6.6.4 “Switch Statement Information”.

5.14.4.11 THE #PRAGMA WARNING DIRECTIVE

This pragma allows control over some of the compiler’s messages, such as warnings
and errors. For full information on the massaging system employed by the compiler,
see Section 4.6 “Compiler Messages”.

5.14.4.11.1 The Warning Disable Pragma
Some warning messages can be disabled by using the war ni ng di sabl e pragma.

This pragma will only affect warnings that are produced by the parser or the code gen-
erator; i.e., errors directly associated with C code. The position of the pragma is only
significant for the parser; i.e., a parser warning number may be disabled for one section
of the code to target specific instances of the warning. Specific instances of a warning
produced by the code generator cannot be individually controlled and the pragma will
remain in force during compilation of the entire module.

The state of those warnings which have been disabled can preserved and recalled
using the war ni ng push and war ni ng pop pragmas. Pushes and pops can be
nested to allow a large degree of control over the message behavior.

The following example shows the warning associated with assigning the address of a
const objectto a pointer to non-const objects. Such code normally produces warning
number 359.
int readp(int * ip) {

return *ip;
}

const int i ="'d";

void mai n(void) {
unsi gned char c;
#pragma war ni ng di sabl e 359
readp(&);
#pragma war ni ng enabl e 359

}

This same affect would be observed using the following code.
#pragma warni ng push
#pragma war ni ng di sabl e 359
readp(&);
#pragma war ni ng pop
Here the state of the messaging system is saved by the war ni ng push pragma.
Warning 359 is disabled, then after the source code which triggers the warning, the
state of the messaging system is retrieved by using the war ni ng pop pragma.

DS52053B-page 220 © 2012 Microchip Technology Inc.

C Language Features

5.14.4.11.2 The Warning Error/warning Pragma
It is also possible to change the type of some messages.

This is only possible by the use of the war ni ng pr agma and only affects messages
generated by the parser or code generator. The position of the pragma is only signifi-
cant for the parser; i.e., a parser message number may have its type changed for one
section of the code to target specific instances of the message. Specific instances of a
message produced by the code generator cannot be individually controlled and the
pragma will remain in force during compilation of the entire module.

The following example shows the warning produced in the previous example being
converted to an error for the instance in the function mai n() .
voi d mai n(void) {
unsi gned char c;
#pragma warni ng error 359
readp(&);

Compilation of this code would result in an error, not the usual warning. The error will
force compilation to cease after the current module has concluded, or immediately if
the maximum error count has been reached.

© 2012 Microchip Technology Inc. DS52053B-page 221

MPLAB® XC8 C Compiler User’s Guide

5.15 LINKING PROGRAMS

The compiler will automatically invoke the linker unless the compiler has been
requested to stop after producing an intermediate file.

The linker will run with options that are obtained from the command-line driver. These
options specify the memory of the device and how the psects should be placed in the
memory. No linker scripts are used.

The linker options passed to the linker can be adjusted by the user, but this is only
required in special circumstances. See Section 4.8.7 “-L-: Adjust Linker Options
Directly” for more information.)

The linker creates a map file which details the memory assigned to psects and some
objects within the code. The map file is the best place to look for memory information.
See Section 7.4 “Map Files” for a detailed explanation of the detailed information in
this file.

5.15.1 Program Sections

There is a lot of confusion as to what psects (program sections) actually are and even
more confusion as to how they are placed in memory. The following aside takes the
form of an analogy and examples, and serves as an introduction to how compilers must
generate code and have it allocated into memory. Such an understanding is vital for
assembly programmers and understanding “Can’t find space” error messages issued
by the linker. Like all analogies, it can be misleading and can only be taken so far, but
it relates the main principles of code generation, the linker and sections back to some-
thing that you should understand.

By the end of this section, you should have a better understanding of:

* Why assembly code has to be packed and manipulated in sections
* Why the linker packs sections into classes rather than the device memory

« Why a “Can’t find space” error message may be issued even though there is
plenty of space left in a device’s memory

5.15.1.1 AN ANALOGY

Our analogy is based around a company which sells components. Customers through-
out the world place orders for these components. The consignments are sent from a
central warehouse in shipping co