

### Is Now Part of



# ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <a href="https://www.onsemi.com">www.onsemi.com</a>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo



March 2012

# FIN3385 / FIN3386 Low-Voltage, 28-Bit, Flat-Panel Display Link Serializer / Deserializer

#### **Features**

- Operation -40°C to +85°C
- Low Power Consumption
- 20MHz to 85MHz Shift Clock Support
- ±1V Common-Mode Range around 1.2V
- Narrow Bus Reduces Cable Size and Cost
- High Throughput (up to 2.38Gbps)
- Internal PLL with No External Component
- Compatible with TIA/EIA-644 Specification
- 56-Lead, TSSOP Package

### Description

The FIN3385 and FIN3386 transform 28-bit wide parallel Low-Voltage TTL (LVTTL) data into four serial Low Voltage Differential Signaling (LVDS) data streams. A phase-locked transmit clock is transmitted in parallel with the data stream over a separate LVDS link. Every cycle of transmit clock, 28-bits of input LVTTL data are sampled and transmitted.

The FIN3386 receives and converts the 4/3 serial LVDS data streams back into 28/21 bits of LVTTL data, acting as the deserializer.

For the FIN3385, at a transmit clock frequency of 85MHz, 28-bits of LVTTL data are transmitted at a rate of 595Mbps per LVDS channel.

This pair solves EMI and cable size problems associated with wide and high-speed TTL interfaces.

## **Ordering Information**

| Part Number | Operating<br>Temperature Range | Package                                   | Packing<br>Method |
|-------------|--------------------------------|-------------------------------------------|-------------------|
| FIN3385MTDX | -40 to +85°C                   | 56-Lead Thin-Shrink Small-Outline Package | Tone and Deal     |
| FIN3386MTDX | -40 to +65 C                   | (TSSOP), JEDEC MO-153,6.1mm Wide          | Tape and Reel     |

## **Block Diagrams**

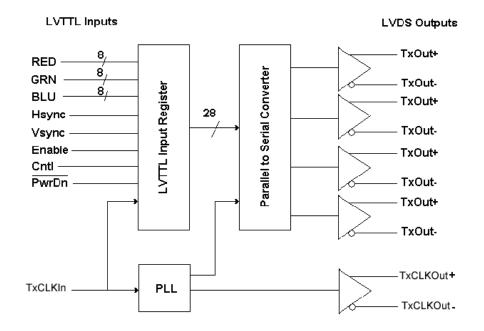



Figure 1. FIN3385 Transmitter Functional Diagram

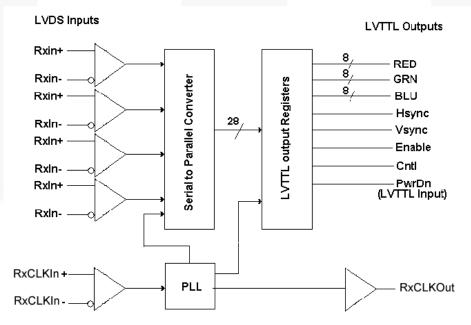



Figure 2. FIN3386 Receiver Functional Diagram

## **Transmitter Pin Configuration**

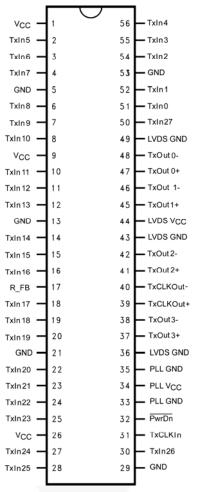



Figure 3. FIN3385 (28:4 Transmitter) Pin Assignments

### **Pin Definitions**

| Pin Names            | I/O Types | Number of Pins | Description of Signals                                                                                |
|----------------------|-----------|----------------|-------------------------------------------------------------------------------------------------------|
| TxIn                 | 1         | 28/21          | LVTTL Level Input                                                                                     |
| TxCLKIn              | I         | 1              | LVTTL Level Clock Input, the rising edge is for data strobe                                           |
| TxOut+               | 0         | 4/3            | Positive LVDS Differential Data Output                                                                |
| TxOut-               | 0         | 4/3            | Negative LVDS Differential Data Output                                                                |
| TxCLKOut+            | 0         | 1              | Positive LVDS Differential Clock Output                                                               |
| TxCLKOut-            | 0         | 1              | Negative LVDS Differential Clock Output                                                               |
| R_FB                 | _         | 1              | Rising Edge Data Strobe: Assert HIGH (V <sub>CC</sub> ) Falling Edge Data Strobe: Assert LOW (Ground) |
| /PwrDn               | I         | 1              | LVTTL Level Power-Down Input Assertion (LOW) puts the outputs in High-Impedance state                 |
| PLL Vcc              | 1         | 1              | Power Supply Pin for PLL                                                                              |
| PLL GND              | I         | 2              | Ground Pins for PLL                                                                                   |
| LVDS V <sub>CC</sub> | I         | 1              | Power Supply Pin for LVDS Output                                                                      |
| LVDS GND             | I         | 3              | Ground Pins for LVDS Output                                                                           |
| V <sub>CC</sub>      | I         | 3              | Power Supply Pins for LVTTL Input                                                                     |
| GND                  | I         | 5              | Ground Pin for LVTTL Input                                                                            |

## **Receiver Pin Configuration**



Figure 4. FIN3386 (28:4 Receiver) Pin Assignments

### **Pin Definitions**

| Pin Names            | I/O Types | Number of Pins | Description of Signals                            |
|----------------------|-----------|----------------|---------------------------------------------------|
| RxIn                 | I         | 4/3            | Negative LVDS Differential Data Output            |
| RxIn+                | I         | 4/3            | Positive LVDS Differential Data Output            |
| RxCLKIn-             | 1         | 1              | Negative LVDS Differential Data Input             |
| RxCLKIn+             | I         | 1              | Positive LVDS Differential Clock Input            |
| RxOut                | 0         | 28/21          | LVTTL Level Data Output, goes HIGH for /PwrDn LOW |
| RxCLKOut-            | 0         | 1              | LVTTL Clock Output                                |
| /PwrDn               | 1         | 1              | LVTTL Level Input. Refer to Table 2               |
| PLL Vcc              | I         | 1              | Power Supply Pin for PLL                          |
| PLL GND              | I         | 2              | Ground Pins for PLL                               |
| LVDS V <sub>CC</sub> | I         | 1              | Power Supply Pin for LVDS Input                   |
| LVDS GND             | I         | 3              | Ground Pins for LVDS Input                        |
| V <sub>CC</sub>      | I         | 4              | Power Supply for LVTTL Output                     |
| GND                  | I         | 5              | Ground Pins for LVTTL Output                      |

### **Truth Tables**

Table 1. Input / Output Truth Table

|            | Inputs                      | Outputs               |                |                           |
|------------|-----------------------------|-----------------------|----------------|---------------------------|
| TxIn       | TxCLKIn                     | /PwrDn <sup>(1)</sup> | TxOut±         | TxCLKOut±                 |
| Active     | Active                      | HIGH                  | LOW / HIGH     | LOW / HIGH                |
| Active     | LOW / HIGH / High Impedance | HIGH                  | LOW / HIGH     | Don't Care <sup>(2)</sup> |
| Floating   | Active                      | HIGH                  | LOW            | LOW / HIGH                |
| Floating   | Floating                    | HIGH                  | LOW            | Don't Care <sup>(2)</sup> |
| Don't Care | Don't Care                  | LOW                   | High Impedance | High Impedance            |

#### Notes:

- 1. The outputs of the transmitter or receiver remain in a high-impedance state until V<sub>CC</sub> reaches 2V.
- 2. TxCLKOut± settles at a free-running frequency when the part is powered up, /PwrDn is HIGH, and the TxCLKIn is a steady logic level (LOW / HIGH / High-Impedance).

### Power-Up / Power-Down Operation Truth Tables

The outputs of the transmitter remain in the High-Impedance state until the power supply reaches 2V. Table 2 shows the operation of the transmitter during power-up and power-down and operation of the /PwrDn pin.

Table 2. Transmitter Power-Up / Power-Down Operation Truth Table

|           |                | PwrDn          | Normal |
|-----------|----------------|----------------|--------|
| $V_{CC}$  | <2V            | >2V            | >2V    |
| TxIN      | Don't Care     | Don't Care     | Active |
| TxOUT     | High Impedance | High Impedance | Active |
| TxCLKIn   | Don't Care     | Don't Care     | Active |
| TxCLKOut± | High Impedance | High Impedance | Active |
| /PwrDn    | LOW            | LOW            | HIGH   |

Table 3. Receiver Power-Up / Power-Down Operation Truth Table

|                 |                   | /PwrDn     |          |                  |        |                     |
|-----------------|-------------------|------------|----------|------------------|--------|---------------------|
| RxIn±           | Don't Care        | Don't Care | Active   | Active           | Note 3 | Note 3              |
| RxOut           | High<br>Impedance | LOW        | LOW/HIGH | Last Valid State | HIGH   | Last Valid<br>State |
| RxCLKIn±        | Don't Care        | Don't Care | Active   | Note 3           | Note 3 | Note 3              |
| RxCLKOut        | High<br>Impedance | Note 4     | Active   | Note 4           | Note 4 | Note 4              |
| /PwrDn          | LOW               | LOW        | HIGH     | HIGH             | HIGH   | HIGH                |
| V <sub>CC</sub> | <2V               | <2V        | <2V      | <2V              | <2V    | <2V                 |

#### Notes:

- If the input is terminated and un-driven (high-impedance) or shorted or open (fail-safe condition).
- 4. For /PwrDn or fail-safe condition, the RxCLKOut pin goes LOW for panel link devices and HIGH for channel link devices.
- 5. Shorted means (± inputs are shorted to each other, or ± inputs are shorted to each other and ground or V<sub>CC</sub>, or either ± inputs are shorted to ground or V<sub>CC</sub>) with no other current/voltage sources (noise) applied. If the V<sub>ID</sub> is still in the valid range (greater than 100mV) and V<sub>CM</sub> is in the valid range (0V to 2.4V), the input signal is still recognized and the part responds normally.

## **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol               | Parameter                                   |            | Min.  | Max.  | Unit |
|----------------------|---------------------------------------------|------------|-------|-------|------|
| V <sub>CC</sub>      | Power Supply Voltage                        |            | -0.3  | +4.6  | V    |
| $V_{ID\_TTL}$        | TTL/CMOS Input/Output Voltage               |            | -0.5  | +4.6  | V    |
| V <sub>IO_LVDS</sub> | LVDS Input/Output Voltage                   | -0.3       | +4.6  | V     |      |
| I <sub>OSD</sub>     | LVDS Output Short-Circuit Current           | Contir     | nuous |       |      |
| T <sub>STG</sub>     | Storage Temperature Range                   | -65        | +150  | °C    |      |
| TJ                   | Maximum Junction Temperature                |            |       | +150  | °C   |
| TL                   | Lead Temperature, Soldering, 4 Seconds      |            |       | +260  | °C   |
|                      | Human Bady Madal JESD22 A444 (4 EkO 400nE)  | I/O to GND |       | >10.0 | k\/  |
| ESD                  | Human Body Model, JESD22-A114 (1.5kΩ,100pF) | All Pins   |       | >6.5  | kV   |
|                      | Machine Model, JESD22-A115 (0Ω, 200pF)      |            |       | >400  | V    |

#### Note:

6. Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

## **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

| Symbol      | Parameter                                   | Min. | Max. | Unit      |
|-------------|---------------------------------------------|------|------|-----------|
| $V_{CC}$    | Supply Voltage                              | 3.0  | 3.6  | V         |
| $T_A$       | Operating Temperature                       | -40  | +85  | °C        |
| $V_{CCNPP}$ | Maximum Supply Noise Voltage <sup>(7)</sup> |      | 100  | $mV_{PP}$ |

#### Note:

 100mV V<sub>CC</sub> noise should be tested for frequency at least up to 2MHz. All the specifications should be met under such noise.

### **Transmitter DC Electrical Characteristics**

Typical values are at  $T_A=25^{\circ}$ C and with  $V_{CC}=3.3V$ ; minimum and maximum are at over supply voltages and operating temperatures ranges, unless otherwise specified.

| Symbol             | Parameter                                                      | Condit                           | ion     | Min.  | Тур.  | Max.            | Unit |
|--------------------|----------------------------------------------------------------|----------------------------------|---------|-------|-------|-----------------|------|
| Transmitt          | er LVTTL Input Characteristics                                 |                                  |         |       |       |                 |      |
| V <sub>IH</sub>    | Input HIGH Voltage                                             |                                  |         | 2.0   |       | V <sub>cc</sub> | V    |
| V <sub>IL</sub>    | Input LOW Voltage                                              |                                  |         | GND   |       | 0.8             | V    |
| V <sub>IK</sub>    | Input Clamp Voltage                                            | I <sub>IK</sub> =-18mA           |         |       | -0.79 | -1.50           | V    |
| 1                  | Input Current                                                  | V <sub>IN</sub> =0.4V to 4.6     | V       |       | 1.8   | 10.0            | μA   |
| I <sub>IN</sub>    | Input Current                                                  | V <sub>IN</sub> =GND             |         | -10   | 0     |                 | μΑ   |
| Transmitt          | er LVDS Output Characteristics <sup>(8)</sup>                  |                                  |         |       |       |                 |      |
| V <sub>OD</sub>    | Output Differential Voltage                                    |                                  |         | 250   |       | 450             | mV   |
| $\Delta V_{OD}$    | V <sub>OD</sub> Magnitude Change from Differential LOW-to-HIGH | - R <sub>L</sub> =100Ω, Figure 5 |         |       |       | 35              | mV   |
| Vos                | Offset Voltage                                                 |                                  |         | 1.125 | 1.250 | 1.375           | V    |
| $\Delta V_{OS}$    | Offset Magnitude Change from<br>Differential LOW-to-HIGH       |                                  |         |       | 25    |                 | mV   |
| I <sub>os</sub>    | Short-Circuit Output Current                                   | V <sub>OUT</sub> =0V             |         | N.    | -3.5  | -5.0            | mA   |
| l <sub>oz</sub>    | Disabled Output Leakage Current                                | DO=0V to 4.6V<br>/PwrDn=0V       | ',      |       | ±1    | ±10             | μΑ   |
| Transmitt          | er Supply Current                                              |                                  |         |       |       |                 |      |
|                    |                                                                |                                  | 32.5MHz |       | 31.0  | 49.5            |      |
|                    | 28:4 Transmitter Power Supply Current                          | R <sub>L</sub> =100Ω             | 40MHz   |       | 32.0  | 55.0            | A    |
| I <sub>CCWT</sub>  | for Worst-Case Pattern (with Load) <sup>(9)</sup>              | Figure 8                         | 66MHz   |       | 37.0  | 60.5            | mA   |
|                    |                                                                |                                  | 85MHz   |       | 42.0  | 66.0            |      |
| I <sub>CCPDT</sub> | Powered-Down Supply Current                                    | /PwrDn=0.8V                      |         |       | 10.0  | 55.0            | μΑ   |
|                    |                                                                |                                  | 32.5MHz | 7     | 29.0  | 41.8            | 1    |
|                    | 28:4 Transmitter Supply Current for                            | Figure 23 <sup>(10)</sup>        | 40MHz   |       | 30.0  | 44.0            | mA   |
| I <sub>CCGT</sub>  | 16 Grayscale <sup>(9)</sup>                                    | i iguie 23                       | 66MHz   |       | 35.0  | 49.5            |      |
|                    |                                                                |                                  | 85MHz   |       | 39.0  | 55.0            |      |

#### Notes:

- Positive current values refer to the current flowing into device and negative values refer to current flowing out of pins. Voltages are referenced to ground unless otherwise specified (except ΔV<sub>OD</sub> and V<sub>OD</sub>).
- 9. The power supply current for both transmitter and receiver can vary with the number of active I/O channels.
- 10. The 16-grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical strips across the display.

## **Transmitter AC Electrical Characteristics**

Typical values are at  $T_A=25$ °C and with  $V_{CC}=3.3V$ ; minimum and maximum are at over supply voltages and operating temperatures ranges, unless otherwise specified.

| Symbol             | Parameter                                       | Condition                                                             | Min.    | Тур. | Max.    | Unit |
|--------------------|-------------------------------------------------|-----------------------------------------------------------------------|---------|------|---------|------|
| t <sub>TCP</sub>   | Transmit Clock Period                           |                                                                       | 11.76   | Т    | 50.00   | ns   |
| t <sub>TCH</sub>   | Transmit Clock (TxCLKIn) HIGH Time              | Figure 9                                                              | 0.35    | 0.50 | 0.65    | Т    |
| t <sub>TCL</sub>   | Transmit Clock LOW Time                         |                                                                       | 0.35    | 0.50 | 0.65    | Т    |
| t <sub>CLKT</sub>  | TxCLKIn Transition Time (Rising and Falling)    | (10% to 90%)<br>Figure 10                                             | 1.0     |      | 6.0     | ns   |
| t <sub>JIT</sub>   | TxCLKIn Cycle-to-Cycle Jitter                   |                                                                       |         |      | 3.0     |      |
| t <sub>XIT</sub>   | TxIn Transition Time                            |                                                                       | 1.5     |      | 6.0     | ns   |
| LVDS Tra           | nsmitter Timing Characteristics                 |                                                                       |         |      |         |      |
| t <sub>TLH</sub>   | Differential Output Rise Time (20% to 80%)      | Figure 9                                                              |         | 0.75 | 1.50    | ns   |
| t <sub>THL</sub>   | Differential Output Fall Time (20% to 80%)      | Figure 8                                                              |         | 0.75 | 1.50    | ns   |
| t <sub>STC</sub>   | TxIn Setup to TxCLNIn                           | Figure 9                                                              | 2.5     |      |         | ns   |
| t <sub>HTC</sub>   | TxIn Holds to TxCLNIn                           | f=85MHz                                                               | 0       |      |         | ns   |
| t <sub>TPDD</sub>  | Transmitter Power-Down Delay                    | Figure 14 (11)                                                        |         |      | 100     | ns   |
| t <sub>TCCD</sub>  | Transmitter Clock Input to Clock Output Delay   | (T <sub>A</sub> =25°C and<br>with V <sub>CC</sub> =3.3V)<br>Figure 13 | 2.8     | 5.5  | 6.8     | ns   |
| Transmitt          | er Output Data Jitter (f=40MHz) <sup>(12)</sup> |                                                                       |         |      |         |      |
| t <sub>TPPB0</sub> | Transmitter Output Pulse Position of Bit 0      |                                                                       | -0.25   | 0    | 0.25    | ns   |
| t <sub>TPPB1</sub> | Transmitter Output Pulse Position of Bit 1      |                                                                       | a-0.25  | а    | a+0.25  | ns   |
| t <sub>TPPB2</sub> | Transmitter Output Pulse Position of Bit 2      | Figure 20                                                             | 2a-0.25 | 2a   | 2a+0.25 | ns   |
| t <sub>TPPB3</sub> | Transmitter Output Pulse Position of Bit 3      | $a = \frac{1}{f \times 7}$                                            | 3a-0.25 | 3a   | 3a+0.25 | ns   |
| t <sub>TPPB4</sub> | Transmitter Output Pulse Position of Bit 4      | f×7                                                                   | 4a-0.25 | 4a   | 4a+0.25 | ns   |
| t <sub>TPPB5</sub> | Transmitter Output Pulse Position of Bit 5      |                                                                       | 5a-0.25 | 5a   | 5a+0.25 | ns   |
| t <sub>TPPB6</sub> | Transmitter Output Pulse Position of Bit 6      |                                                                       | 6a-0.25 | 6a   | 6a+0.25 | ns   |
| Transmitt          | er Output Data Jitter (f=65MHz) (12)            |                                                                       |         |      |         |      |
| t <sub>TPPB0</sub> | Transmitter Output Pulse Position of Bit 0      |                                                                       | -0.2    | 0    | 0.2     | ns   |
| t <sub>TPPB1</sub> | Transmitter Output Pulse Position of Bit 1      |                                                                       | a-0.2   | а    | a+0.2   | ns   |
| t <sub>TPPB2</sub> | Transmitter Output Pulse Position of Bit 2      | Figure 20                                                             | 2a-0.2  | 2a   | 2a+0.2  | ns   |
| t <sub>TPPB3</sub> | Transmitter Output Pulse Position of Bit 3      | $a = \frac{1}{f \times 7}$                                            | 3a-0.2  | 3a   | 3a+0.2  | ns   |
| t <sub>TPPB4</sub> | Transmitter Output Pulse Position of Bit 4      | f × 7                                                                 | 4a-0.2  | 4a   | 4a+0.2  | ns   |
| t <sub>TPPB5</sub> | Transmitter Output Pulse Position of Bit 5      |                                                                       | 5a-0.2  | 5a   | 5a+0.2  | ns   |
| t <sub>TPPB6</sub> | Transmitter Output Pulse Position of Bit 6      |                                                                       | 6a-0.2  | 6a   | 6a+0.2  | ns   |

Continued on the following page...

### Transmitter AC Electrical Characteristics (Continued)

Over supply voltage and operating temperature ranges, unless otherwise specified.

| Symbol             | Parameter                                                          | Condition                  | Min.   | Тур. | Max.   | Unit |
|--------------------|--------------------------------------------------------------------|----------------------------|--------|------|--------|------|
| Transmit           | ter Output Data Jitter (f=85MHz) <sup>(12)</sup>                   | <u> </u>                   | •      |      |        |      |
| t <sub>TPPB0</sub> | Transmitter Output Pulse Position of Bit 0                         |                            | -0.2   | 0    | 0.2    | ns   |
| t <sub>TPPB1</sub> | Transmitter Output Pulse Position of Bit 1                         |                            | a-0.2  | а    | a+0.2  | ns   |
| t <sub>TPPB2</sub> | Transmitter Output Pulse Position of Bit 2                         | Figure 20                  | 2a-0.2 | 2a   | 2a+0.2 | ns   |
| t <sub>TPPB3</sub> | Transmitter Output Pulse Position of Bit 3                         | $a = \frac{1}{f \times 7}$ | 3a-0.2 | 3a   | 3a+0.2 | ns   |
| t <sub>TPPB4</sub> | Transmitter Output Pulse Position of Bit 4                         | f × 7                      | 4a-0.2 | 4a   | 4a+0.2 | ns   |
| t <sub>TPPB5</sub> | Transmitter Output Pulse Position of Bit 5                         |                            | 5a-0.2 | 5a   | 5a+0.2 | ns   |
| t <sub>TPPB6</sub> | Transmitter Output Pulse Position of Bit 6                         |                            | 6a-0.2 | 6a   | 6a+0.2 | ns   |
|                    |                                                                    | f=40MHz                    |        | 350  | 370    |      |
| $t_{JCC}$          | FIN3385 Transmitter Clock Out Jitter,<br>Cycle-to-Cycle, Figure 20 | f=65MHz                    |        | 210  | 230    | ps   |
|                    |                                                                    | f=85MHz 110 150            | 150    |      |        |      |
| t <sub>TPLLS</sub> | Transmitter Phase Lock Loop Set Time <sup>(13)</sup>               | Figure 26 <sup>(12)</sup>  |        |      | 10     | ms   |

#### Notes:

- 11. Outputs of all transmitters stay in 3-STATE until power reaches 2V. Clock and data output begins to toggle 10ms after  $V_{CC}$  reaches 3.0V and /PwrDn pin is above 1.5V.
- 12. This output data pulse position works for both transmitters for TTL inputs, except the LVDS output bit mapping difference (see Figure 18). Figure 20 shows the skew between the first data bit and clock output. A two-bit cycle delay is guaranteed when the MSB is output from transmitter.
- 13. This jitter specification is based on the assumption that PLL has a reference clock with cycle-to-cycle input jitter of less than 2ns.

## **Receiver DC Characteristics**

Typical values are at  $T_A$ =25°C and with  $V_{CC}$ =3.3V. Minimum and maximum values are over supply voltage and operating temperature ranges unless otherwise specified. Positive current values refer to the current flowing into device and negative values refer to current flowing out of pins. Voltages are referenced to ground unless otherwise specified (except  $\Delta V_{OD}$  and  $V_{OD}$ ).

| Symbol             | Parameter                                                 | Conditio                                         | n              | Min. | Тур.  | Max.            | Unit |
|--------------------|-----------------------------------------------------------|--------------------------------------------------|----------------|------|-------|-----------------|------|
| LVTTL/CI           | MOS DC Characteristics                                    |                                                  |                |      |       |                 |      |
| V <sub>IH</sub>    | Input High Voltage                                        |                                                  |                | 2.0  |       | V <sub>CC</sub> | V    |
| V <sub>IL</sub>    | Input Low Voltage                                         |                                                  |                | GND  |       | 0.8             | V    |
| V <sub>OH</sub>    | Output High Voltage                                       | I <sub>OH</sub> =-0.4mA                          |                | 2.7  | 3.3   |                 | V    |
| V <sub>OL</sub>    | Output Low Voltage                                        | I <sub>OL</sub> =2mA                             |                |      | 0.06  | 0.30            | V    |
| $V_{IK}$           | Input Clamp Voltage                                       | I <sub>IK</sub> =-18mA                           |                |      | -0.79 | -1.50           | ٧    |
| I <sub>IN</sub>    | Input Current                                             | V <sub>IN</sub> =0V to 4.6V                      |                | -10  |       | 10              | μΑ   |
| I <sub>OFF</sub>   | Input/Output Power-Off Leakage Current                    | V <sub>CC</sub> =0V, All LVTTL Inp<br>0V to 4.6V | outs / Outputs |      |       | ±10             | μΑ   |
| I <sub>os</sub>    | Output Short-Circuit Current                              | V <sub>OUT</sub> =0V                             |                |      | -60   | -120            | mA   |
| Receiver           | LVDS Input Characteristics                                |                                                  |                |      |       |                 |      |
| $V_{TH}$           | Differential Input Threshold<br>HIGH                      | Figure 6, Table 4                                |                |      |       | 100             | mV   |
| $V_{TL}$           | Differential Input Threshold LOW                          | Figure 6, Table 4                                |                | -100 | \.    |                 | mV   |
| V <sub>ICM</sub>   | Input Common Mode Range                                   | Figure 6, Table 4                                |                | 0.05 |       | 2.35            | V    |
|                    | Innut Current                                             | V <sub>IN</sub> =2.4V, V <sub>CC</sub> =3.6V or  | r 0V           |      |       | ±10             | ^    |
| I <sub>IN</sub>    | Input Current                                             | V <sub>IN</sub> =0V, V <sub>CC</sub> =3.6V or 0  | )V             |      |       | ±10             | μΑ   |
| Receiver           | Supply Current                                            |                                                  |                |      |       |                 |      |
|                    | 4:28 Receiver Power Supply                                |                                                  | 32.5MHz        |      |       | 70              |      |
|                    | Current for Worst-Case Pattern with Load <sup>(14)</sup>  |                                                  | 40.0MHz        |      |       | 75              |      |
|                    |                                                           |                                                  | 66.0MHz        |      |       | 114             |      |
| I <sub>CCWR</sub>  |                                                           | C <sub>L</sub> =8pF, Figure 7                    | 85.0MHz        |      |       | 135             | mA   |
| COVVIC             | 3:21 Receiver Power Supply Current for Worst-Case Pattern |                                                  | 32.5MHz        |      | 49    | 60              |      |
|                    | with Load <sup>(14)</sup>                                 |                                                  | 40.0MHz        |      | 53    | 65              |      |
|                    |                                                           |                                                  | 66.0MHz        |      | 78    | 100             |      |
|                    |                                                           |                                                  | 85.0MHz        |      | 90    | 115             |      |
| I <sub>CCPDT</sub> | Powered-Down Supply Current                               | /PwrDn=0.8V (RxOut \$                            | Stays LOW)     |      | NA    | 55              | μΑ   |

## **Receiver AC Characteristics**

Typical values are at  $T_A$ =25°C and with  $V_{CC}$ =3.3V; minimum and maximum are at over supply voltages and operating temperatures ranges, unless otherwise specified.

| Symbol             | Parameter                                                  | Condition                                                 | Min.  | Тур.  | Max.  | Unit |
|--------------------|------------------------------------------------------------|-----------------------------------------------------------|-------|-------|-------|------|
| t <sub>RCOP</sub>  | Receiver Clock Output (RxCLKOut) Period                    |                                                           | 11.76 | Т     | 50.00 |      |
| t <sub>RCOL</sub>  | RxCLKOut LOW Time                                          | Figure 12                                                 | 4.0   | 5.0   | 6.0   | ns   |
| t <sub>RCOH</sub>  | RxCLKOut HIGH Time                                         | Rising Edge Strobe                                        | 4.5   | 5.0   | 6.5   | ns   |
| t <sub>RSRC</sub>  | RxOut Valid Prior to RxCLKOut                              | f=85MHz                                                   | 3.5   |       |       | ns   |
| t <sub>RHRC</sub>  | RxOut Valid After RxCLKOut                                 |                                                           | 3.5   |       |       | ns   |
| t <sub>ROLH</sub>  | Output Rise Time (20% to 80%)                              | 0 0 5 5                                                   |       | 2.0   | 3.5   |      |
| t <sub>ROHL</sub>  | Output Fall Time (80% to 20%)                              | C <sub>L</sub> =8pF, Figure 8                             |       | 1.8   | 3.5   | ns   |
| t <sub>RCCD</sub>  | Receiver Clock Input to Clock Output Delay <sup>(15)</sup> | T <sub>A</sub> =25°C, V <sub>CC</sub> =3.3V,<br>Figure 24 | 3.5   | 5.0   | 7.5   | ns   |
| t <sub>RPPD</sub>  | Receiver Power-Down Delay                                  | Figure 17                                                 |       |       | 1.0   | μs   |
| t <sub>RSPB0</sub> | Receiver Input Strobe Position of Bit 0                    |                                                           | 0.49  | 0.84  | 1.19  | ns   |
| t <sub>RSPB1</sub> | Receiver Input Strobe Position of Bit 1                    |                                                           | 2.17  | 2.52  | 2.87  | ns   |
| t <sub>RSPB2</sub> | Receiver Input Strobe Position of Bit 2                    |                                                           | 3.85  | 4.20  | 4.55  | ns   |
| t <sub>RSPB3</sub> | Receiver Input Strobe Position of Bit 3                    | Figure 21                                                 | 5.53  | 5.88  | 6.23  | ns   |
| t <sub>RSPB4</sub> | Receiver Input Strobe Position of Bit 4                    | _ f=85MHz                                                 | 7.21  | 7.56  | 7.91  | ns   |
| t <sub>RSPB5</sub> | Receiver Input Strobe Position of Bit 5                    |                                                           | 8.89  | 9.24  | 9.59  | ns   |
| t <sub>RSPB6</sub> | Receiver Input Strobe Position of Bit 6                    |                                                           | 10.57 | 10.92 | 11.27 | ns   |
| t <sub>RSKM</sub>  | RxIN Skew Margin <sup>(16)</sup>                           | Figure 21                                                 | 290   |       |       | ps   |
| t <sub>RPLLS</sub> | Receiver Phase Lock Loop Set Time                          | Figure 21                                                 |       | 10    |       | ms   |
| t <sub>RCOP</sub>  | Receiver Clock Output (RxCLKOut) Period                    | Figure 12                                                 | 15    | Т     | 50    | ns   |
| t <sub>RCOL</sub>  | RxCLKOut LOW Time                                          |                                                           | 10.0  | 11.0  |       | ns   |
| t <sub>RCOH</sub>  | RxCLKOut HIGH Time                                         | Figure 12                                                 | 10.0  | 12.2  |       |      |
| t <sub>RSRC</sub>  | RxOUT Valid Prior to RxCLKOut                              | Rising Edge Strobe f=40MHz                                | 6.5   | 11.6  |       |      |
| t <sub>RHRC</sub>  | RxOUT Valid After RxCLKOut                                 | 1- 1011112                                                | 6.0   | 11.6  |       |      |
| t <sub>RCOL</sub>  | RxCLKOut LOW Time                                          |                                                           | 5.0   | 6.3   | 9.0   |      |
| t <sub>RCOH</sub>  | RxCLKOut HIGH Time                                         | Figure 12,                                                | 5.0   | 7.6   | 9.0   | ns   |
| t <sub>RSRC</sub>  | RxOUT Valid Prior to RxCLKOut                              | Rising Edge Strobe <sup>(17)</sup>                        | 4.5   | 7.3   | y.    |      |
| t <sub>RHRC</sub>  | RxOUT Valid After RxCLKOut                                 | 1-001/11/12                                               | 4.0   | 6.3   |       |      |
| t <sub>ROLH</sub>  | Output Rise Time (20% to 80%)                              | (17)                                                      |       | 2.0   | 5.0   |      |
| t <sub>ROHL</sub>  | Output Fall Time (20% to 80%)                              | C <sub>L</sub> =8pF <sup>(17)</sup> , Figure 12           |       | 1.8   | 5.0   | ns   |
| t <sub>RCCD</sub>  | Receiver Clock Input to Clock Output Delay <sup>(18)</sup> | Figure 14, T <sub>A</sub> =25°C and V <sub>CC</sub> =3.3v | 3.5   | 5.0   | 7.5   | ns   |
| t <sub>RPDD</sub>  | Receiver Power-Down Delay                                  | Figure 17                                                 |       |       | 1.0   | μs   |
| t <sub>RSPB0</sub> | Receiver Input Strobe Position of Bit 0                    |                                                           | 1.00  | 1.40  | 2.15  |      |
| t <sub>RSPB1</sub> | Receiver Input Strobe Position of Bit 1                    |                                                           | 4.50  | 5.00  | 5.80  | -    |
| t <sub>RSPB2</sub> | Receiver Input Strobe Position of Bit 2                    | 7                                                         | 8.10  | 8.50  | 9.15  |      |
| t <sub>RSPB3</sub> | Receiver Input Strobe Position of Bit 3                    | Figure 21, f=40MHz                                        | 11.6  | 11.9  | 12.6  | ns   |
| t <sub>RSPB4</sub> | Receiver Input Strobe Position of Bit 4                    |                                                           | 15.1  | 15.6  | 16.3  |      |
| t <sub>RSPB5</sub> | Receiver Input Strobe Position of Bit 5                    |                                                           | 18.8  | 19.2  | 19.9  |      |
| t <sub>RSPB6</sub> | Receiver Input Strobe Position of Bit 6                    |                                                           | 22.5  | 22.9  | 23.6  |      |

### **Receiver AC Characteristics**

Typical values are at  $T_A$ =25°C and with  $V_{CC}$ =3.3V; minimum and maximum are at over supply voltages and operating temperatures ranges, unless otherwise specified.

| Symbol             | Parameter                               | Condition          | Min. | Тур. | Max. | Unit |
|--------------------|-----------------------------------------|--------------------|------|------|------|------|
| t <sub>RSPB0</sub> | Receiver Input Strobe Position of Bit 0 |                    | 0.7  | 1.1  | 1.4  |      |
| t <sub>RSPB1</sub> | Receiver Input Strobe Position of Bit 1 |                    | 2.9  | 3.3  | 3.6  | ns   |
| t <sub>RSPB2</sub> | Receiver Input Strobe Position of Bit 2 |                    | 5.1  | 5.5  | 5.8  |      |
| t <sub>RSPB3</sub> | Receiver Input Strobe Position of Bit 3 | Figure 21, f=66MHz | 7.3  | 7.7  | 8.0  |      |
| t <sub>RSPB4</sub> | Receiver Input Strobe Position of Bit 4 | Bit 4              |      | 9.9  | 10.2 |      |
| t <sub>RSPB5</sub> | Receiver Input Strobe Position of Bit 5 |                    | 11.7 | 12.1 | 12.4 |      |
| t <sub>RSPB6</sub> | Receiver Input Strobe Position of Bit 6 |                    | 13.9 | 14.3 | 14.6 |      |
| t <sub>RSKM</sub>  | RxIn Skew Margin <sup>(19)</sup>        | f=40MHz, Figure 21 | 490  |      |      | 20   |
|                    |                                         | f=66MHz, Figure 21 | 400  |      |      | ps   |
| t <sub>RPLLS</sub> | Receiver Phase Lock Loop Set Time       | Figure 15          |      |      | 10.0 | ms   |

#### Notes:

- 14. The power supply current for the receiver can vary with the number of I/O channels.
- 15. Total channel latency from serializer to deserializer is (t + t<sub>TCCD</sub>) where t is a clock period.
- 16. Receiver skew margin is defined as the valid sampling window after considering potential setup/hold time and minimum/maximum bit position.
- 17. For the receiver with falling-edge strobe, the definition of setup/hold time is slightly different from the one with rising-edge strobe. The clock reference point is the time when the clock falling edge passes through 2V. For hold time t<sub>RHRC</sub>, the clock reference point is the time when falling edge passes through +0.8V.
- 18. Total channel latency from serializer to deserializer is (t + t<sub>CCD</sub>) (2•t + t<sub>RCCD</sub>) where t is the clock period.
- 19. Receiver skew margin is defined as the valid sampling window after considering potential setup/hold time and minimum / maximum bit position.

## **Test Circuits**

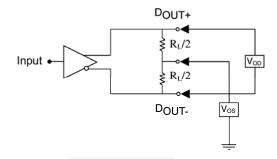
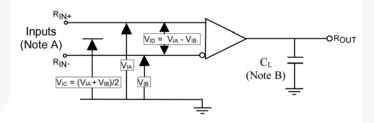




Figure 5. Differential LVDS Output DC Test Circuit



#### Notes:

A: For all input pulses,  $t_R$  or  $t_F <= 1$ ns.

B: C<sub>L</sub> includes all probe and jig capacitance.

Figure 6. Differential Receiver Voltage Definitions, Propagation Delay, and Transition Time Test Circuit

Table 4. Receiver Minimum and Maximum Input Threshold Test Voltages

| Applied Vo      | oltages (V) | Resulting Differential Input Voltage (mV) | Resulting Common<br>Mode Input Voltage (V) |  |  |
|-----------------|-------------|-------------------------------------------|--------------------------------------------|--|--|
| V <sub>IA</sub> | $V_{IB}$    | V <sub>ID</sub>                           | V <sub>ICM</sub>                           |  |  |
| 1.25            | 1.15        | 100                                       | 1.20                                       |  |  |
| 1.15            | 1.25        | -100                                      | 1.20                                       |  |  |
| 2.40            | 2.30        | 100                                       | 2.35                                       |  |  |
| 2.30            | 2.40        | -100                                      | 2.35                                       |  |  |
| 0.10            | 0           | 100                                       | 0.05                                       |  |  |
| 0               | 0.10        | -100                                      | 0.05                                       |  |  |
| 1.50            | 0.90        | 600                                       | 1.20                                       |  |  |
| 0.90            | 1.50        | -600                                      | 1.20                                       |  |  |
| 2.40            | 1.80        | 600                                       | 2.10                                       |  |  |
| 1.80            | 2.40        | -600                                      | 2.10                                       |  |  |
| 0.60            | 0           | 600                                       | 0.30                                       |  |  |
| 0               | 0.60        | -600                                      | 0.30                                       |  |  |

## **AC Loadings and Waveforms**

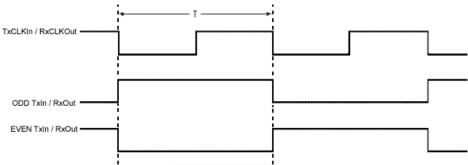



Figure 7. Worst-Case Test Pattern

#### Note:

20. The worst-case test pattern produces a maximum toggling of digital circuits, LVDS I/O, and LVTTL/CMOS I/O. Depending on the valid strobe edge of the transmitter, the TxCLKIn can be rising or falling edge data strobe.

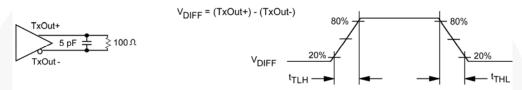



Figure 8. Transmitter LVDS Output Load and Transition Times

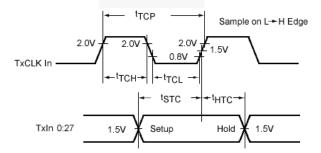



Figure 9. Transmitter Setup/Hold and HIGH/LOW Times (Rising-Edge Strobe)

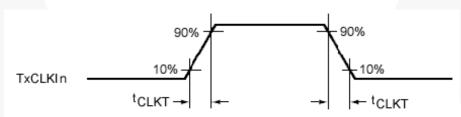



Figure 10. Transmitter Input Clock Transition Time

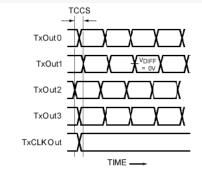



Figure 11. Transmitter Outputs Channel-to-Channel Skew

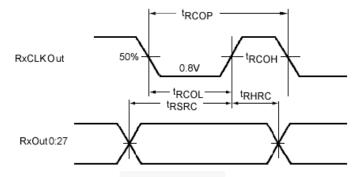



Figure 12. Receiver Setup/Hold and HIGH/LOW Times

#### Note:

21. For the receiver with falling-edge strobe, the definition of setup/hold time is slightly different from the one with rising-edge strobe. The clock reference point is the time when the clock falling edge passes through 2V. For hold time t<sub>RHRC</sub>, the clock reference point is the time when falling edge passes through +0.8V.

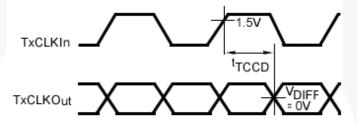



Figure 13. Transmitter Clock-In to Clock-Out Delay (Rising-Edge Strobe)

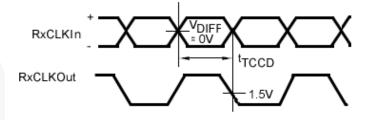



Figure 14. Receiver Clock-In to Clock-Out Delay (Falling-Edge Strobe)

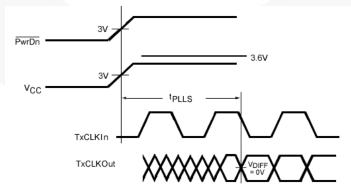



Figure 15. Receiver Phase-Lock-Loop Set Time

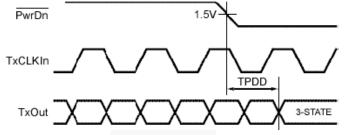



Figure 16. Transmitter Power-Down Delay

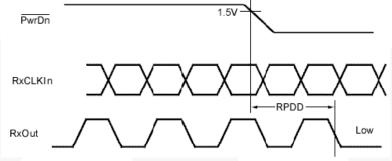



Figure 17. Receiver Power-Down Delay

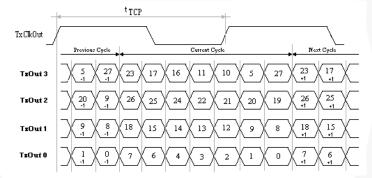



Figure 18. 28 Parallel LVTTL Inputs Mapped to Four Serial LVDS Outputs

#### Note:

22. The information in this diagram shows the difference between clock out and the first data bit. A 2-bit cycle delay is guaranteed when the MSB is output from the transmitter.

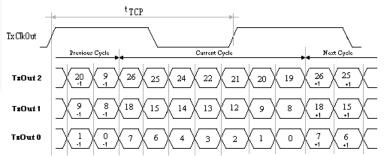



Figure 19. 21 Parallel LVTTL Inputs Mapped to Three Serial Outputs

#### Note

23. This output date pulse position works for both transmitters with 21 TTL inputs, except the LVDS output bit mapping difference. Two-bit cycle delay is guaranteed with the MSB is output from transmitter.

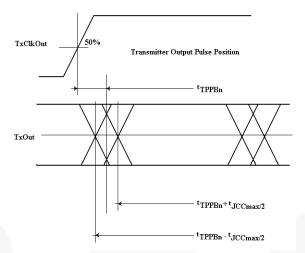



Figure 20. Transmitter Output Pulse Bit Position

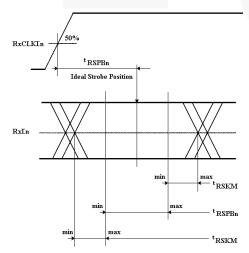



Figure 21. Receiver Input Bit Position

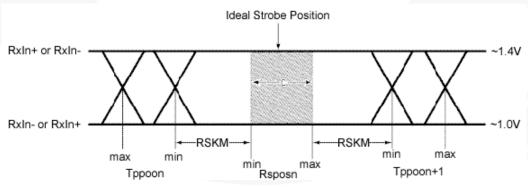



Figure 22. Receiver LVDS Input Skew Margin

#### Note:

24. t<sub>RSKM</sub> is the budget for the cable skew and source clock skew plus Inter-Symbol Interference (ISI). The minimum and maximum pulse position values are based on the bit position of each of the seven bits within the LVDS data stream across PVT (Process, Voltage Supply, and Temperature).




Figure 23. Transmitter Clock Out Jitter Measurement Setup

#### Note:

25. Test setup considers no requirement for separation of RMS and deterministic jitter. Other hardware setups, such as Wavecrest boxes, can be used if no M1 software is available, but the test methodology in Figure 24 should be followed.

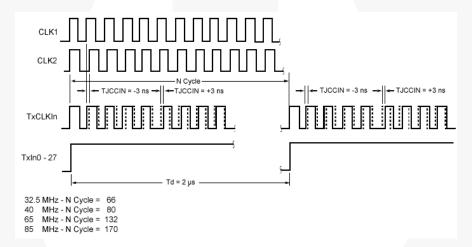



Figure 24. Timing Diagram of Transmitter Clock Input with Jitter

#### Note:

- 26. This jitter pattern is used to test the jitter response (clock out) of the device over the power supply range with worst jitter ±3ns (cycle-to-cycle) clock input. The specific test methodology is as follows:
- 27. Switching input data TxIn0 to TxIn20 at 0.5MHz and the input clock is shifted to left -3ns and to the right +3ns when data is HIGH.
- 28. The ±3ns cycle-to-cycle input jitter is the static phase error between the two clock sources. Jumping between two clock sources to simulate the worst-case of clock-edge jump (3ns) from graphical controllers. Cycle-to-cycle jitter at TxCLKOut pin should be measured cross V<sub>CC</sub> range with 100mV noise (V<sub>CC</sub> noise frequency <2MHz).

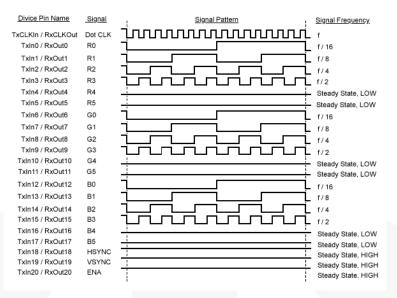



Figure 25. "16-Grayscale" Test Pattern

#### Note:

29. The 16-grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical strips across the display.

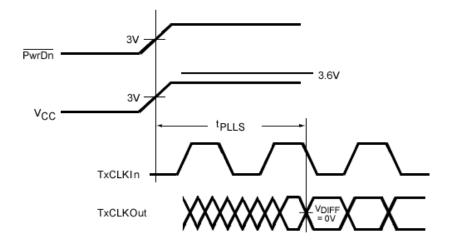



Figure 26. Transmitter Phase-Lock-Loop Time

## Α 14.00±0.10 0.15 TYP 56 В 6.15 $6.10\pm0.10$ 8.10 4.05 23 0.2 C B A ALL LEAD TIPS PIN #1 IDENT. 0.30 0.50 LAND PATTERN RECOMMENDATION REFERENCE TSSOP50P810X120-56N 0.1 C SEE DETAIL A 1.1 MAX ALL LEAD TIPS -C-0.09-0.20 0.10±0.05 0.50 0.17-0.27 ⊕ 0.10M A BS CS

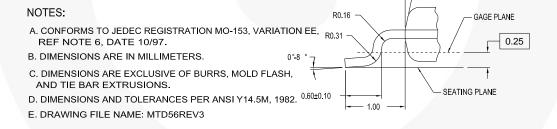



Figure 27. 56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153,6.1mm Wide

MTD56REV3

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

**Physical Dimensions** 

12.00° TOP & BOTTOM

**DETAIL** A





#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ F-PFS" AccuPower™ FRFFT® Global Power Resource<sup>SM</sup> AX-CAP™\* GreenBridge™ BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™ CorePLUS™ Gmax™ CorePOWER™ GTO™ CROSSVOLT™ IntelliMAX™ **CTL™** ISOPLANAR™ Current Transfer Logic™

Dual Cool™
EcoSPARK®

EfficientMax™

EfficientMax™

ESBC™

MicroFET™

MicroPak™

MicroPak2™ Fairchild® Miller Drive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ Motion-SPM™ FACT<sup>®</sup> mWSaver™ FAST® OptoHiT™ FastvCore™ OPTOLOGIC® FETRench™ OPTOPLANAR® FlashWriter®\*

PowerTrench<sup>®</sup> PowerXS™

Programmable Active Droop™ OFET®

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

Solutions for Your SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™
■
SYSTEM
■
GENERAL®\*

The Power Franchise®
the Wer'
franchise
TinyBoost™
TinyCalc™
TinyCalc™
TinyCopt™
TinyPower™
TinyPower™
TinyPower™
TinyPower™
TinyPower™
TinyPower™
TinyPower™
TinyBic™
TranSic™
TranSic™
TRUECURRENT®\*
µSerDes™

Serioes"
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

- Life support devices or systems are devices or systems which, (a)
  are intended for surgical implant into the body or (b) support or
  sustain life, and (c) whose failure to perform when properly used in
  accordance with instructions for use provided in the labeling, can be
  reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### PRODUCT STATUS DEFINITIONS

#### **Definition of Terms**

| Definition of Terms      |                       |                                                                                                                                                                                                     |  |  |  |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |  |  |  |
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |  |  |  |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |  |  |  |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |  |  |  |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.<br>The datasheet is for reference information only.                                                 |  |  |  |

Rev. I61

<sup>\*</sup> Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative