

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

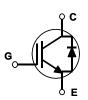
FAIRCHILD

SEMICONDUCTOR®

SGH15N60RUFD Short Circuit Rated IGBT

General Description

Fairchild's RUFD series of Insulated Gate Bipolar Transistors (IGBTs) provide low conduction and switching losses as well as short circuit ruggedness. The RUFD series is designed for applications such as motor control, uninterrupted power supplies (UPS) and general inverters where short circuit ruggedness is a required feature.


Features

- Short circuit rated 10us @ $T_C = 100^{\circ}C$, $V_{GE} = 15V$
- High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.2 \text{ V} @ I_C = 15 \text{ A}$
- High input impedance
- CO-PAK, IGBT with FRD : $t_{rr} = 42ns$ (typ.)

Applications

AC & DC motor controls, general purpose inverters, robotics, and servo controls.

G C E TO-3P

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

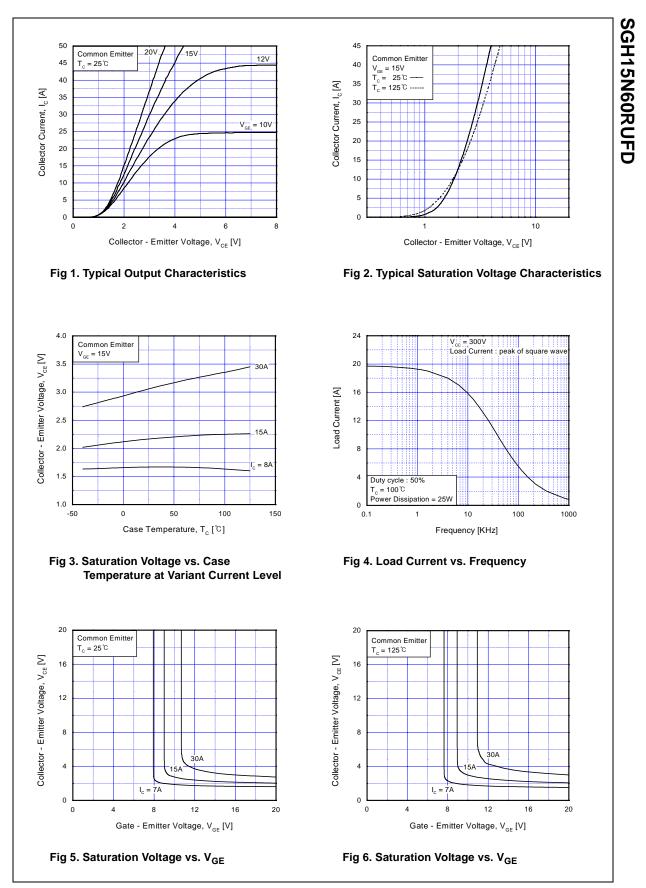
Symbol	Description		SGH15N60RUFD	Units	
V _{CES}	Collector-Emitter Voltage		600	V	
V _{GES}	Gate-Emitter Voltage		± 20	V	
I _C	Collector Current	@ $T_{C} = 25^{\circ}C$	24	A	
	Collector Current	@ T _C = 100°C	15	A	
I _{CM (1)}	Pulsed Collector Current		45	Α	
I _F	Diode Continuous Forward Current	@ T _C = 100°C	15	A	
I _{FM}	Diode Maximum Forward Current		160	A	
T _{SC}	Short Circuit Withstand Time	@ T _C = 100°C	10	us	
P _D	Maximum Power Dissipation	@ $T_{C} = 25^{\circ}C$	160	W	
	Maximum Power Dissipation	@ T _C = 100°C	64	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp, for Soldering		300	°C	

Notes :

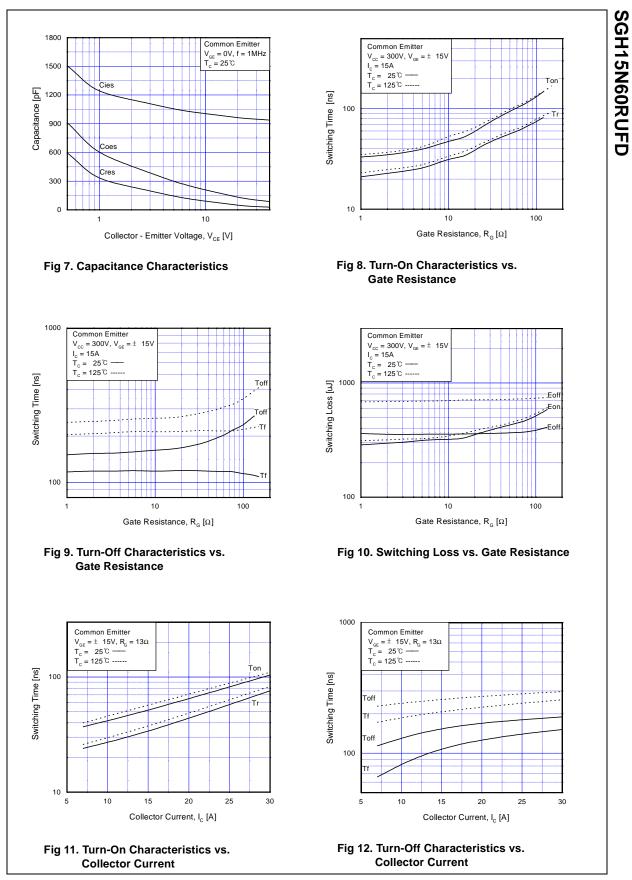
(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

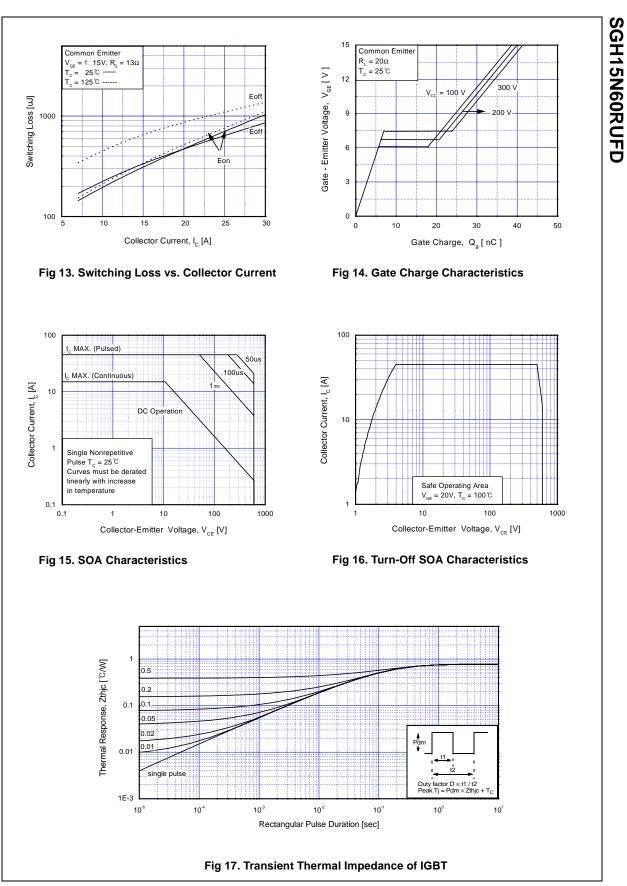
Symbol	Parameter	Тур.	Max.	Units
R _{0JC} (IGBT)	Thermal Resistance, Junction-to-Case		0.77	°C/W
R _{0JC} (DIODE)	Thermal Resistance, Junction-to-Case		0.7	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient		40	°C/W

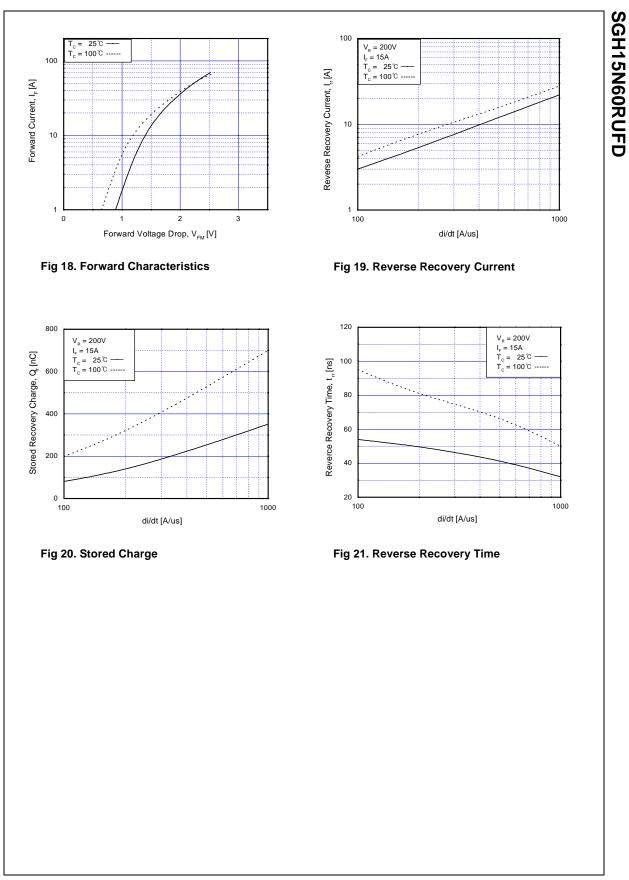

©2002 Fairchild Semiconductor Corporation

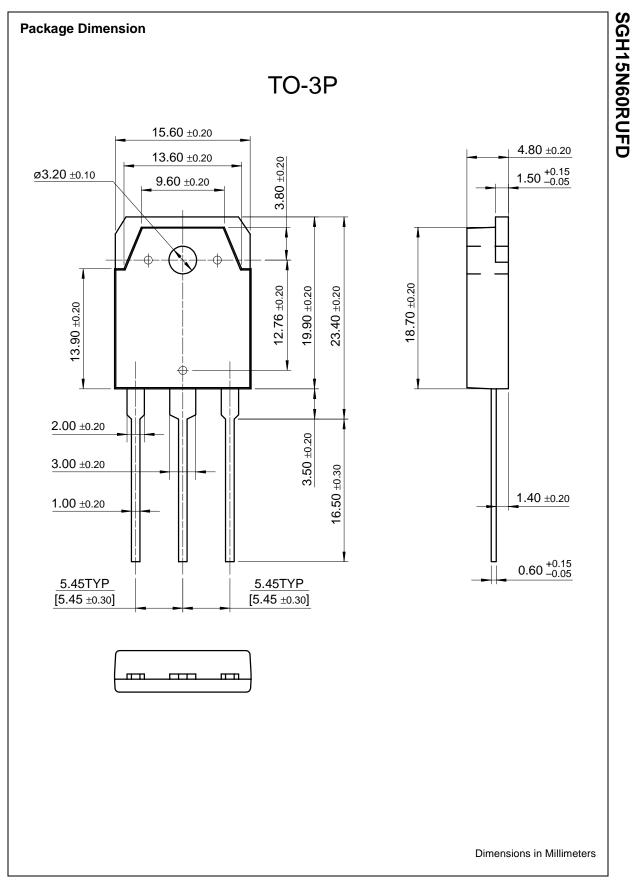
IGBT


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Char	acteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			V
ΔB _{VCES} / ΔT _J	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0V, I_C = 1mA$		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Char	acteristics					
	G-E Threshold Voltage	I _C = 15mA, V _{CE} = V _{GE}	5.0	6.0	8.5	V
V _{GE(th)}	Collector to Emitter	$I_{\rm C} = 15 {\rm MA}, V_{\rm CE} = V_{\rm GE}$ $I_{\rm C} = 15 {\rm A}, V_{\rm GE} = 15 {\rm V}$		2.2	2.8	V
V _{CE(sat)}	Saturation Voltage	$I_{\rm C} = 24$ A, $V_{\rm GE} = 15$ V		2.5		v
				2.0		-
Dynamio	Characteristics					
C _{ies}	Input Capacitance	$V_{} = 30V_{} = 0V_{}$		948		pF
C _{oes}	Output Capacitance	V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		101		pF
C _{res}	Reverse Transfer Capacitance	1 - 110112		33		pF
t _{d(on)} t-	Turn-On Delay Time Rise Time	-		17 33		ns ns
<u>t_r</u>	,	-				
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 300 V, I _C = 15A,		44	65	nS
t _f	Fall Time	R _G = 13Ω, V _{GE} = 15V,		118	200	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C		320		uJ
E _{off}	Turn-Off Switching Loss			356		uJ
E _{ts}	Total Switching Loss			676	950	uJ
t _{d(on)}	Turn-On Delay Time			20		ns
t _r	Rise Time			34		ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 300 V, I _C = 15A,		48	70	ns
t _f	Fall Time	$R_G = 13\Omega$, $V_{GE} = 15V$,		212	350	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 125°C		340		uJ
E _{off}	Turn-Off Switching Loss			695		uJ
E _{ts}	Total Switching Loss			1035	1450	uJ
T _{sc}	Short Circuit Withstand Time	$V_{CC} = 300 \text{ V}, V_{GE} = 15 \text{ V}$ @ T _C = 100°C	10			us
Qg	Total Gate Charge	V _{CE} = 300 V, I _C = 15A,		42	60	nC
Q _{ge}	Gate-Emitter Charge	$V_{CE} = 300 \text{ v}, \text{ I}_{C} = 15\text{A},$ - $V_{GE} = 15\text{V}$		7	10	nC
Q _{gc}	Gate-Collector Charge			17	24	nC
Le	Internal Emitter Inductance	Measured 5mm from PKG		14		nH

Electrical Characteristics of DIODE $T_{C} = 25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
V_{FM}	Diode Forward Voltage	$I_{\Gamma} = 15A$	$T_{C} = 25^{\circ}C$		1.4	1.7	V
			$T_C = 100^{\circ}C$		1.3		
	Diode Reverse Recovery Time		$T_{C} = 25^{\circ}C$		42	60	ns
۲r		I _F = 15A, di/dt=200 A/us	$T_C = 100^{\circ}C$		60		
	Diode Peak Reverse Recovery		$T_{C} = 25^{\circ}C$		3.5	6.0	۸
Irr	Current		T _C = 100°C		5.6		A
0	Diode Reverse Recovery Charge		$T_{C} = 25^{\circ}C$		80	180	nC
Q _{rr}			$T_C = 100^{\circ}C$		220		nc




SGH15N60RUFD Rev. A1

SGH15N60RUFD Rev. A1

SGH15N60RUFD Rev. A1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FAST® Bottomless™ FASTr™ CoolFET™ FRFET™ CROSSVOLT™ GTO™ DenseTrench™ HiSeC™ DOME™ **EcoSPARK™** I²C[™] E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™]

GlobalOptoisolator™ PACMAN™ POP™ **ISOPLANAR™** QFET™ QS™ LittleFET™ MicroFET™ MicroPak™

MICROWIRE™ OPTOLOGIC™ **OPTOPLANAR™** Power247[™] $\mathsf{PowerTrench}^{\mathbb{R}}$ QT Optoelectronics[™] Quiet Series™

SLIENT SWITCHER® UHC™ SMART START™ UltraFET[®] SPM™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SvncFET™ TinyLogic™ TruTranslation™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC